【題目】垃圾分類有利于對(duì)垃圾進(jìn)行分流處理,能有效提高垃圾的資源價(jià)值和經(jīng)濟(jì)價(jià)值,力爭(zhēng)物盡其用,為了了解同學(xué)們對(duì)垃圾分類相關(guān)知識(shí)的掌握情況,增強(qiáng)同學(xué)們的環(huán)保意識(shí),某校對(duì)八年級(jí)甲,乙兩班各60名學(xué)生進(jìn)行了垃極分類相關(guān)知識(shí)的測(cè)試,并分別抽取了15份成績(jī),整理分析過(guò)程如下,請(qǐng)補(bǔ)充完整.

(收集數(shù)據(jù))

甲班15名學(xué)生測(cè)試成績(jī)統(tǒng)計(jì)如下:(滿分100分)

68,7289,85,82,85,74,9280,85,78,85,69,76,80

乙班15名學(xué)生測(cè)試成績(jī)統(tǒng)計(jì)如下:《滿分100分)

86,89,8376,73,78,6780,80,79,8084,82,80,83

(整理數(shù)據(jù))

1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù)

組別

頻數(shù)

65.570.5

70.575.5

75.580.5

80.585.5

85.590.5

90.595.5

2

2

4

5

1

1

1

1

a

b

2

0

在表中,a   b   

2)補(bǔ)全甲班15名學(xué)生測(cè)試成績(jī)頻數(shù)分布直方圖:

(分析數(shù)據(jù))

3)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:

班級(jí)

平均數(shù)

眾數(shù)

中位數(shù)

方差

80

x

80

47.6

80

80

y

26.2

在表中:x   ,y   

4)若規(guī)定得分在80分及以上(含80分)為合格,請(qǐng)估計(jì)乙班60名學(xué)生中垃極分類及投放相關(guān)知識(shí)合格的學(xué)生有   人.

5)你認(rèn)為哪個(gè)班的學(xué)生掌握垃圾分類相關(guān)知識(shí)的整體水平較好,說(shuō)明理由.

【答案】(1)7,4;(2)詳見(jiàn)解析;(385,80;(428;(5)乙班的學(xué)生掌握垃圾分類相關(guān)知識(shí)的整體水平較好.

【解析】

1)由收集的數(shù)據(jù)即可得;

2)根據(jù)題意不全頻數(shù)分布直方圖即可;

3)根據(jù)眾數(shù)和中位數(shù)的定義求解可得;

4)用總?cè)藬?shù)乘以乙班樣本中合格人數(shù)所占比例可得;

5)甲、乙兩班的方差判定即可.

1)乙班75.580.5分?jǐn)?shù)段的學(xué)生數(shù)為7,80.585.5分?jǐn)?shù)段的學(xué)生數(shù)為4,

a7,b4,

2)補(bǔ)全甲班15名學(xué)生測(cè)試成績(jī)頻數(shù)分布直方圖如圖所示,

3)甲班15名學(xué)生測(cè)試成績(jī)中85出現(xiàn)的次數(shù)最多,故x85;

把乙班學(xué)生測(cè)試成績(jī)按從小到大排列為:67,7376,78,7980,80,80,80,82,83,83,84,86,89,

處在中間位置的數(shù)為80,故y80;

故答案為:85,80

460××100%28(人),

答:乙班60名學(xué)生中垃極分類及投放相關(guān)知識(shí)合格的學(xué)生有28人;

故答案為:28

5)乙班的學(xué)生掌握垃圾分類相關(guān)知識(shí)的整體水平較好,

甲班的方差>乙班的方差,

乙班的學(xué)生掌握垃圾分類相關(guān)知識(shí)的整體水平較好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對(duì)稱軸是直線x=1.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1y2,請(qǐng)直接寫出n的取值范圍;

(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣1p2時(shí),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=ACBDAC,垂足為E,點(diǎn)FBD的延長(zhǎng)線上,且DF=DC,連接AF、CF.

(1)求證:∠BAC=2DAC

(2)AF10,BC4,求tanBAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬(wàn)座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬(wàn)座。

1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬(wàn)座?;

2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長(zhǎng)率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:如圖1,在等邊△ABC中,AB=12,⊙C半徑為6,P為圓上一動(dòng)點(diǎn),連結(jié)AP,BP,求AP+BP的最小值.

1)嘗試解決:為了解決這個(gè)問(wèn)題,下面給出一種解題思路:如圖2,連接CP,在CB上取點(diǎn)D,使CD=3,則有==,又∵∠PCD=BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.請(qǐng)你完成余下的思考,并直接寫出答案:AP+BP的最小值為.

2)自主探索:如圖1,矩形ABCD中,BC=7,AB=9,P為矩形內(nèi)部一點(diǎn),且PB=3AP+PC的最小值為.

3)拓展延伸:如圖2,扇形COD中,O為圓心,∠COD=120°,OC=4,OA=2OB=3,點(diǎn)P上一點(diǎn),求2PA+PB的最小值,畫(huà)出示意圖并寫出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 與x軸、y軸分別交于AR兩點(diǎn),直線x軸、y軸分別交于C、兩點(diǎn),且

1)如圖,為直線上一點(diǎn),橫坐標(biāo)為,為直線上一動(dòng)點(diǎn),當(dāng)最小時(shí),將線段沿射線方向平移,平移后、的對(duì)應(yīng)點(diǎn)分別為,當(dāng)最小時(shí),求點(diǎn)的坐標(biāo);

2)如圖,將沿著軸翻折,得到,再將繞著點(diǎn)順時(shí)針旋轉(zhuǎn))得到,直線與直線、軸分別交于點(diǎn)、.當(dāng)為等腰三角形時(shí),請(qǐng)直接寫出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD是△ABC的中線,且∠DAC=∠BCD=CE.

(1)求證: ;

(2)若AB=15,BC=10,試求ACAD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道, OM寬度為16米,其頂點(diǎn)POM的距離為8

請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求出這條拋物線的函數(shù)解析式;

隧道下的公路是雙向行車道正中間是一條寬1米的隔離帶,其中的一條行車道能否行駛寬米、高米的特種車輛?請(qǐng)通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明遇到下面一個(gè)問(wèn)題:

如圖1所示,的角平分線,,求的值.

小明發(fā)現(xiàn),分別過(guò),作直線的垂線,垂足分別為.通過(guò)推理計(jì)算,可以解決問(wèn)題(如圖2.請(qǐng)回答,________.

參考小明思考問(wèn)題的方法,解決問(wèn)題:

如圖3,四邊形中,平分,,.相交于點(diǎn).

1=______.

2=__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案