【題目】(1)發(fā)現(xiàn)問(wèn)題:如圖①平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,DEAC,CEBD,可知:四邊形OCED是什么形(不需要證明).

(2)類比探究:如圖②矩形ABCD的對(duì)角線相交于點(diǎn)O,DEAC,CEBD,四邊形OCED是什么形,請(qǐng)說(shuō)明理由;

(3)拓展應(yīng)用:如圖③,菱形ABCD的對(duì)角線相交于點(diǎn)O,ABC=60°,BC=4,DEACBC的延長(zhǎng)線于點(diǎn)F,CEBD求四邊形ABFD的周長(zhǎng).

【答案】(1)平行四邊形;(2)菱形,證明見解析;(320.

【解析】

1)利用兩組對(duì)邊平行的四邊形是平行四邊形;

2)先判斷出四邊形OCED是平行四邊形,再用矩形的性質(zhì)即可得出結(jié)論;

3)先判斷出三角形CDF是等邊三角形,即可得出結(jié)論.

1)∵DEAC,CEBD

∴四邊形OCED是平行四邊形,

故答案為:平行四邊形;

2)四邊形OCED是菱形,

證明:∵DEACCEBD,

∴四邊形OCED是平行四邊形,

∵四邊形ABCD是矩形,

OC=OD

OCED是菱形,

故答案為:菱形.

3)∵ADBC,DEAC,

∴四邊形ACFD是平行四邊形,

∵四邊形ABCD是菱形,∠ABC=60°BC=4,

AD=BC=AB=DC=4,∠DCF=60°,

∴△DCF是等邊三角形,

CF=DF=CD=4

∴四邊形ABFD的周長(zhǎng)為AB+BC+CF+DF+AD=4×5=20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蕪湖長(zhǎng)江大橋是中國(guó)跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板如圖擺放,∠OAB=OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AODON平分∠COB,則∠MON的度數(shù)為(

A.60°B.45°C.65.5°D.52.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)拼一拼,畫一畫:請(qǐng)你用4個(gè)長(zhǎng)為a,寬為b的矩形拼成一個(gè)大正方形,并且正中間留下一個(gè)洞,這個(gè)洞恰好是一個(gè)小正方形。

2)用不同方法計(jì)算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?

3)當(dāng)拼成的這個(gè)大正方形邊長(zhǎng)比中間小正方形邊長(zhǎng)多3cm時(shí),它的面積就多24cm2,求中間小正方形的邊長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標(biāo)軸交于A、B兩點(diǎn),若△AOB(O是原點(diǎn))的面積恰為2,則符合要求的直線l有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAB的中點(diǎn),的延長(zhǎng)線于點(diǎn)E,連接AE,過(guò)點(diǎn)ADP于點(diǎn)F,連接BF下列結(jié)論中:;;是等邊三角形;;其中正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形ABCD中, , ,

1)如圖1,連接AC,求證:CA的平分線;

2)線段BC上一點(diǎn)E,將 沿AE翻折,點(diǎn)B落到點(diǎn)F處,射線EF與線段CD交于點(diǎn)M

①如圖2,當(dāng)點(diǎn)M與點(diǎn)D重合時(shí),求證: ;

②如圖3,當(dāng)點(diǎn)M不與點(diǎn)D重合時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算或化簡(jiǎn):

121+

22x2y(﹣3xy÷xy2

3)(﹣2a3a2a+3

4)(x+3)(x+4)﹣(x12

5[2a3x2a2x)﹣a2x2(﹣ax2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)出某塔CD的高度,在塔前的平地上選擇一點(diǎn)A,用測(cè)角儀測(cè)得塔頂D的仰角為30°,在A、C之間選擇一點(diǎn)B(A、B、C三點(diǎn)在同一直線上).用測(cè)角儀測(cè)得塔頂D的仰角為75°,且AB間的距離為40m.

(1)求點(diǎn)B到AD的距離;
(2)求塔高CD(結(jié)果用根號(hào)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案