【題目】如圖,在長方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.動點P從A出發(fā),以1厘米/秒的速度沿A→B運動,到B點停止運動;同時點Q從C點出發(fā),以2厘米/秒的速度沿C→B→A運動,到A點停止運動.設(shè)P點運動的時間為t秒(t>0),
(1)當點Q在BC邊上運動時,t為何值,AP=BQ;
(2)當t為何值時,S△ADP=S△BQD.
【答案】(1)t為時,AP=BQ;(2)當t=s或4s后,S△ADP=S△BQD.
【解析】
(1)分別用含t的式子表示出AP、BQ,根據(jù)AP=BQ,可得t的值.
(2)分兩種情況討論,①當點Q在CB上時,②當點Q運動至BA上時,分別表示出△ADP及△BQD的面積,建立方程求解即可.
(1)當點Q在BC邊上運動時,
AP=t,BQ=4-2t,
由題意得:t=4-2t,
解得:t=;
即當點Q在BC邊上運動時,t為時,AP=BQ;
(2)①當點Q在CB上時,
如圖1所示:
S△ADP=AD×AP=2t,S△BQD=BQ×DC=(4-2t),
則2t=(4-2t),
解得:t=;
②當點Q運動至BA上時,
如圖2所示:
S△ADP=AD×AP=2t,S△BQD=BQ×DA=2(2t-4),
則2t=2(2t-4),
解得:t=4;
綜上可得:當t=s或4s后,S△ADP=S△BQD.
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分9分)如圖,以⊿ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點分別為D,E,且.
(1)試判斷⊿ABC的形狀,并說明理由;
(2)已知半圓的半徑為5,BC=12,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD的對角線AC、BD相交于點O,則下列條件不能判定四邊形ABCD是平行四邊形的是
A. , B. ,
C. , D. ,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB的一條直角邊OB在x軸上,雙曲線(x>0)經(jīng)過斜邊OA的中點C,與另一直角邊交于點D.若=3,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點同終點同方向勻速跑步500米,先到終點的人原地體息.已知甲先出發(fā),在跑步過程中,甲、乙兩人的距離與乙出發(fā)的時間之間的關(guān)系如圖所示,給出的下結(jié)論:①,②,③,其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把2018個正整數(shù)1,2,3,4,…,2018按如圖方式排列成一個表.
(1)用如圖方式框住表中任意4個數(shù),記左上角的一個數(shù)為,則另三個數(shù)用含的式子表示出來,從小到大依次是__________、___________、_______________(請直接填寫答案);
(2)用(1)中方式被框住的4個數(shù)之和可能等于2019嗎?如果可能,請求出的值;如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進行了筆試和面試,各項成績滿分均為100分,然后再按筆試占60%、面試占40%計算候選人的綜合成績(滿分為100分).
他們的各項成績?nèi)缦卤硭荆?/span>
修造人 | 筆試成績/分 | 面試成績/分 |
甲 | 90 | 88 |
乙 | 84 | 92 |
丙 | x | 90 |
丁 | 88 | 86 |
(1)直接寫出這四名候選人面試成績的中位數(shù);
(2)現(xiàn)得知候選人丙的綜合成績?yōu)?7.6分,求表中x的值;
(3)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市“健益”超市購進一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)()存在如下圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得 最大利潤?最大利潤是多少?
(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD交于點O,點E在邊CB的延長線上,且∠EAC=90°,AE2=EBEC.
(1)求證:四邊形ABCD是矩形;
(2)延長DB、AE交于點F,若AF=AC,求證:AE=BF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com