精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在我國釣魚島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持10海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,B的北偏東15°方向有一不明國籍的漁船C,求此時漁船C與海監(jiān)船B的距離是多少.(結果保留根號)

【答案】

【解析】

試題首先過點BBD⊥ACD,由題意可知,∠BAC=45°,∠ABC=90°+15°=105°,則可求得∠ACD的度數,然后利用三角函數的知識求解即可求得答案.

解:由題意可知,∠BAC=45°,

∠ABC=90°+15°=105°

∴∠ACB=180°﹣∠BAC﹣∠ABC=30°

BD⊥ACD

Rt△ABD中,(海里),

Rt△BCD中,(海里).

答:此時漁船C與海監(jiān)船B的距離是海里.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑CD2,弧AC的度數為80°,點B是弧AC的中點,點P在直徑CD上移動,則BP+AP的最小值為(

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數關系式;

(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】食品安全受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩份尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題.

1)接受問卷調查的學生共有_____人,扇形統計圖中基本了解部分所對應扇形的圓心角為_____.

2)請補全條形統計圖.

3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到了解基本了解程度的總人數.

4)若從對食品安全知識達到了解程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

【答案】160;90°;(2)補圖見解析;(3300;(4

【解析】分析:(1)根據了解很少的人數除以了解很少的人數所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統計圖;(3)用總人數乘以了解基本了解程度的人數所占的比例,即可求出達到“了解”和“基本了解”程度的總人數(4)根據題意列出表格,再根據概率公式即可得出答案.

詳解:(160;90°.

2)補全的條形統計圖如圖所示.

3)對食品安全知識達到了解基本了解的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到了解基本了解程度的總人數為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.

點睛:本題考查了條形統計圖、扇形統計圖以及用列表法或樹狀圖法求概率,根據題意求出總人數是解題的關鍵;注意運用概率公式:概率=所求情況數與總情況數之比.

型】解答
束】
24

【題目】為響應國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統計每年的借閱人數和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數有1350人,預計2018年達到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正比例函數和反比例函數的圖象都經過點 A ( 3 , 3) ,把直線 OA 向下平移后,與反比例函數的圖象交于點B(6,m),與x軸、y軸分別交于C、D兩點.

(1)求 m的值;

( 2 )求過 A、BD 三點的拋物線的解析式;

( 3 )若點E是拋物線上的一個動點,是否存在點 E,使四邊形 OECD 的面積S1,是四邊形OACD 面積S?若存在,求點 E 的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在以點O為圓心的半圓中,AB為直徑,且AB=4,將該半圓折疊,使點A和點B落在點O處,折痕分別為ECFD,則圖中陰影部分面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,以AC為直徑作⊙OBC于點D,交AB于點G,且DBC中點,DEAB,垂足為E,交AC的延長線于點F.

(1)求證:直線EF是⊙O的切線;

(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長;

(3)連接CG,在(2)的條件下,求CG:EF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BD、CE是角平分線,AMBD于點M,ANCE于點N.△ABC的周長為30,BC12.則MN的長是( )

A. 15B. 9C. 6D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線Ly=﹣x2+bx+c經過坐標原點,與它的對稱軸直線x2交于A點.

1)直接寫出拋物線的解析式;

2)⊙Ax軸相切,交y軸于B、C點,交拋物線L的對稱軸于D點,恒過定點的直線ykx2k+8k0)與拋物線L交于MN點,AMN的面積等于2,試求:

①弧BC的長;

k的值.

查看答案和解析>>

同步練習冊答案