【題目】某市移動公司為了調(diào)查手機(jī)發(fā)送短信息的情況,在本區(qū)域的120位用戶中抽取了10位用戶來統(tǒng)計他們某周發(fā)信息的條數(shù),結(jié)果如下表:

手機(jī)用戶序號

1

2

3

4

5

6

7

8

9

10

發(fā)送短信息條數(shù)

20

19

20

20

21

17

15

23

20

25

本次調(diào)查中這120位用戶大約每周一共發(fā)送條短信息.

【答案】2400.
【解析】解:∵這10位用戶的平均數(shù)是(20×4+19+21+17+15+23+25)÷10=20(條),
∴這100位用戶大約每周發(fā)送20×120=2400(條);
所以答案是:2400.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a2﹣2a分解因式,正確的是( 。

A. aa﹣2) B. aa+2) C. aa2﹣2) D. a(2﹣a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037 mg,已知1 g=1 000 mg,那么0.000 037 mg用科學(xué)記數(shù)法表示為( )

A. 3.7×10-5 g B. 3.7×10-6 g C. 3.7×10-7 g D. 3.7×10-8 g

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有25名同學(xué)參加某比賽,預(yù)賽成績各不相同,取前13名參加決賽,其中一名同學(xué)已經(jīng)知道自己的成績,能否進(jìn)入決賽,只需要再知道這25名同學(xué)成績的( )

A. 最高分 B. 平均數(shù) C. 中位數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有4名同學(xué),他們得到的蘋果數(shù)恰好是一個比一個多1個,而他們的蘋果數(shù)的乘積是5040,那么他們得到的蘋果數(shù)之和是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個兩位質(zhì)數(shù),它的個位數(shù)字與十位數(shù)字之差的經(jīng)驗值等于5,這樣的兩位質(zhì)數(shù)是;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說出理由.

解:猜想∠BPD+∠B+∠D=360°

理由:過點P作EF∥AB,

∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補)

∵AB∥CD,EF∥AB,

∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)

∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補)

∴∠B+∠BPE+∠EPD+∠D=360°

∴∠B+∠BPD+∠D=360°

(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說明理由.

(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宏遠(yuǎn)商貿(mào)公司有A、B兩種型號的商品需運出,這兩種商品的體積和質(zhì)量分別如下表所示:

體積(m3/件)

質(zhì)量(噸/件)

A型商品

0.8

0.5

B型商品

2

1

(1)已知一批商品有A、B兩種型號,體積一共是20m3,質(zhì)量一共是10.5噸,求A、B兩種型號商品各有幾件?

(2)物流公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6m3,其收費方式有以下兩種:

①按車收費:每輛車運輸貨物到目的地收費600元;

②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.

要將(1)中的商品一次或分批運輸?shù)侥康牡,宏遠(yuǎn)商貿(mào)公司應(yīng)如何選擇運送、付費方式運費最少并求出該方式下的運費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的對角線AC=12,∠ACO=30°

(1)求B、C兩點的坐標(biāo);

(2)過點G()作GFAC,垂足為F,直線GF分別交AB、OC于點E、D,求直線DE的解析式;

(3)的條件下,若點M在直線DE上,平面內(nèi)是否存在點P,使以O(shè)、F、M、P為頂點的四邊形是菱形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案