【題目】對于點P(a,b),點Q(c,d),如果a﹣b=c﹣d,那么點P與點Q就叫作等差點.例如:點P(4,2),點Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H(2,3),點N(﹣2,﹣3),MN⊥y軸,HM⊥x軸,點P是直線y=x+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____.
【答案】﹣5<b<5
【解析】
由題意,G(-2,3),M(2,-3),根據(jù)等差點的定義可知,當(dāng)直線y=x+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,求出直線經(jīng)過點G或M時的b的值即可判斷.
解:由題意,G(-2,3),M(2,-3),
根據(jù)等差點的定義可知,當(dāng)直線y=x+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,
當(dāng)直線y=x+b經(jīng)過點G(-2,3)時,b=5,
當(dāng)直線y=x+b經(jīng)過點M(2,-3)時,b=-5,
∴滿足條件的b的范圍為:-5<b<5.
故答案為:-5<b<5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.
(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;
(2)當(dāng)△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點D恰落在AB邊上的點M處,折痕為AN,那么下列說法不正確的是( 。
A. MN∥BCB. MN=AMC. AN=BCD. BM=CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是的一張紙條,按圖圖圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3中,則圖2中的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補全解答過程:
已知:如圖,直線,直線與直線,分別交于點,;平分,.求的度數(shù).
解:與交于點,(已知)
.(_______________)
,(已知)
.(______________)
,與,交于點,,(已知)
(_____________)
_______
平分,(已知)
_______.(角平分線的定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0, ),點A坐標(biāo)為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點F為線段AC上一動點,過點F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點E,G,當(dāng)四邊形OEFG為正方形時,求出點F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題.從下列四個條件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中選出兩個作為補充條件,使平行四邊形ABCD成為正方形(如圖所示).現(xiàn)有下列四種選法,你認(rèn)為其中錯誤的是( )
A. ①②B. ②④C. ①③D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)的產(chǎn)品供不應(yīng)求,若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于44萬元,每套產(chǎn)品的售價不低于80萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)間滿足關(guān)系式y(tǒng)1=160﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com