【題目】如圖,在平面直角坐標(biāo)系中,ABC內(nèi)接于⊙P,AB是⊙P的直徑,A(10)、C(3,2),BC的延長(zhǎng)線交y軸于點(diǎn)D,點(diǎn)Fy軸上的一動(dòng)點(diǎn),連接FC并延長(zhǎng)交x軸于點(diǎn)E

1)求⊙P的半徑;

2)當(dāng)∠A=DCF時(shí),求證:CE是⊙P的切線.

【答案】13;(2)見(jiàn)解析

【解析】

1)作CGx軸于G,根據(jù)勾股定理和射影定理即可得到結(jié)論;

2)連接PC,由AB是⊙P的直徑,得到∠ACB=90°根據(jù)等腰三角形的性質(zhì)得到∠PCB=PBC,根據(jù)切線的判定定理即可得到結(jié)論.

1)作CGx軸于G

AG=3-(-1)=4,CG=,

AC2=AG2+CG2=42+(2)2=24,

由射影定理得:AC2=AGAB

AB6,

∴⊙P的半徑為3;

2)連接PC

AB是⊙P的直徑,

∴∠ACB=90°,

∴∠CAB+CBA=90°.

PC=PB

∴∠PCB=PBC

∵∠CAB=DCF=ECB,

∴∠ECB+PCB=90°.

C在⊙P上,

CE是⊙P的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年伊始,一場(chǎng)突如其來(lái)的疫情防控戰(zhàn)在中華大地驟然打響,全國(guó)人民自覺(jué)居家減少外出,師生停課不停學(xué),舉國(guó)共抗疫情.某中學(xué)在復(fù)學(xué)后,為了了解學(xué)生們?cè)诰蛹移陂g的生活狀態(tài),以更好地保護(hù)復(fù)學(xué)后學(xué)生們的身心健康,對(duì)本校學(xué)生進(jìn)行了居家期間學(xué)習(xí)之余主要活動(dòng)的抽樣調(diào)查.種類為:(A)強(qiáng)身健體、(B)藝術(shù)熏陶、(C)經(jīng)典閱讀、(D)分擔(dān)勞動(dòng)、(E)其他.針對(duì)以上活動(dòng)種類,統(tǒng)計(jì)學(xué)生們花時(shí)間最多的種類的人數(shù),以繪制成如下兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題.

1)被抽樣調(diào)查的總?cè)藬?shù)為   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校共有學(xué)生1800人,請(qǐng)估算種類D的大約人數(shù);

4)據(jù)此疫情經(jīng)歷,給自己提出一條人生建議   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABE中,∠B=90°,AB=BE,將ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到AHD,過(guò)DDCBEBE的延長(zhǎng)線于點(diǎn)C,連接BH并延長(zhǎng)交DC于點(diǎn)F,連接DEBF于點(diǎn)O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③HBF的中點(diǎn);④BC-CF=2CE;⑤CD=HF,其中正確的有(

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市迎接奧運(yùn)圣火的活動(dòng)中,某校教學(xué)樓上懸掛著宣傳條幅DC,小麗同學(xué)在點(diǎn)A處,測(cè)得條幅頂端D的仰角為30°,再向條幅方向前進(jìn)10米后,又在點(diǎn)B處測(cè)得條幅頂端D的仰角為45°,已知測(cè)點(diǎn)ABC離地面高度都為1.44米,求條幅頂端D點(diǎn)距離地面的高度.(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,BC4,∠ABC60°,BD平分∠ABC,交AC于點(diǎn)D,M,N分別是BD,BC上的動(dòng)點(diǎn),則CM+MN的最小值是( 。

A. B. 2C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,D是弦AC的延長(zhǎng)線上一點(diǎn),且CD=AC,DB的延長(zhǎng)線交⊙O于點(diǎn)E.

(1)求證:CD=CE;

(2)連結(jié)AE,若∠D=25°,求∠BAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的袋子中裝有標(biāo)號(hào)分別為1、23、4、55個(gè)小球,這些球除標(biāo)號(hào)外都相同.

1)從袋中任意摸出一個(gè)球,摸到標(biāo)號(hào)為偶數(shù)的概率是  ;

2)先從袋中任意摸出一個(gè)球后不放回,將球上的標(biāo)號(hào)作為十位上的數(shù)字,再?gòu)拇腥我饷鲆粋(gè)球,將球上的標(biāo)號(hào)作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB9cm,E是直線CD上一點(diǎn),連接AC,BE,若ACBE交于點(diǎn)FDE3cm,則EFBE的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B為反比例函數(shù)y=圖象上的點(diǎn),AD⊥x軸于點(diǎn)D,直線AB分別交x軸,y軸于點(diǎn)E,C,CO=OE=ED.

(1)求直線AB的函數(shù)解析式;

(2)F為點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn),求△ABF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案