精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3,若點A′的坐標為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( 。

A. B. C. D.

【答案】B

【解析】

試題延長A′B′BC于點E,根據大正方形的對角線長求得其邊長,然后求得小正方形的邊長后即可求兩個正方形的相似比.在正方形ABCD中,AC=3,∴BC=AB=3,延長A′B′BC于點E,A′的坐標為(12),∴OE=1EC=A′E=3﹣1=2,∴OEBC=13,∴AA′AC=13,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′AC=13正方形A′B′C′D′與正方形ABCD的相似比是.故選B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】用了“不等式的兩邊同時乘以或除以同一個負數,不等號的方向改變”這一不等式基本性質的變形是

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為4,頂點A,C分別在x軸、y軸的正半軸上,拋物線y=-x2bxc經過點BC兩點,點D為拋物線的頂點,連接ACBD,CD.

(1)求此拋物線的解析式;

(2)求此拋物線頂點D的坐標和四邊形ABDC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數y=(1-2m)x+m+1(m≠),函數值y隨自變量x值的增大而減小.

(1)m的取值范圍;

(2)在平面直角坐標系xOy中,這個函數的圖象與x軸的交點M位于x軸的正半軸還是負半軸?請簡述理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計劃對某區(qū)域進行綠化,經投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.求甲、乙兩工程隊每天能完成綠化的面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°D是邊AC上的一點,連接BD,使∠A=2∠1,EBC上的一點,以BE為直徑的⊙O經過點D

1)求證:AC⊙O的切線;

2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市有甲、乙、丙三種商品,原價分別為20/件,50/件,30/件.小慧一共購買了三次,僅有一次購買時丙商品打折,其余均無打折.前兩次購買甲商品的數量相同,記為件,第三次購買甲的數量記為件,乙的數量記為件,其余各商品的數量與總費用信息如下表:

購買次數

甲的數量(件)

乙的數量(件)

丙的數量(件)

購買費用(元)

第一次

4

3

390

第二次

4

5

375

第三次

4

320

1)小慧第________次購買的丙商品有打折,求本次丙商品打幾折?

2)若第三次購買的每種商品不少于1件,問第三次購買商品的數量總和是多少件?

3)五一期間,該超市這三種商品的單價都有所下降,以每件下降金額來比較,乙商品是甲商品的2倍,丙商品是甲商品的倍.小瑋在此期間分別花了160元、210元、120元來購買甲、乙、丙三種商品,結果甲、丙的數量之和是乙的3倍,求本次購買跟原價相比共節(jié)省了多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某廣告公司設計一幅周長為16米的矩形廣告牌,廣告設計費為每平方米2000元.設矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數關系式,并寫出自變量x的取值范圍;

(2)設計費能達到24000元嗎?為什么?

(3)當x是多少米時,設計費最多?最多是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,BC=8cm,AC=6cm,點EBC的中點,動點PA點出發(fā),先以每秒2cm的速度沿AC運動,然后以1cm/s的速度沿CB運動.若設點P運動的時間是t秒,那么當t=_______,APE的面積等于8

查看答案和解析>>

同步練習冊答案