【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點(diǎn)F,直線AO交⊙O于點(diǎn)E,D.
(1)求證:AO是△ABC的角平分線;
(2)若tan∠D=,求的值;
(3)如圖2,在(2)條件下,連接CF交AD于點(diǎn)G,⊙O的半徑為3,求CF的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)連接OF,可得OF⊥AB,由∠ACB=90°,OC=OF,可得出結(jié)論;
(2)連接CE,先求證∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,結(jié)合tan∠D==,即可得到結(jié)論;
(3)連接CF交AD于點(diǎn)M,由(2)可知,AC2=AEAD,先求出AE,AC的長,則AO可求出,證△CMO∽△ACO,可得OC2=OMOA,求出OM,CM,結(jié)合CF=2CM,即可求解.
(1)如圖1,連接OF,
∵AB與⊙O相切于點(diǎn)F,
∴OF⊥AB,
∵∠ACB=90°,OC=OF,
∴AO是△ABC的角平分線;
(2)如圖2,連接CE,
∵ED是⊙O的直徑,
∴∠ECD=90°,
∴∠ECO+∠OCD=90°,
∵∠ACB=90°,
∴∠ACE+∠ECO=90°,
∴∠ACE=∠OCD,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠ACE=∠ODC,
∵∠CAE=∠CAE,
∴△ACE∽△ADC,
∴,
∵tan∠D=,
∴=,
∴=;
(3)由(2)可知:=,
∴設(shè)AE=x,AC=2x,
∵△ACE∽△ADC,
∴,
∴AC2=AEAD,
∴(2x)2=x(x+6),
解得:x=2或x=0(不合題意,舍去),
∴AE=2
∴AO=AE+OE=2+3=5,
如圖3,連接CF交AD于點(diǎn)M,
∵AC,AF是⊙O的切線,
∴AC=AF,∠CAO=∠OAF,
∴CF⊥AO,
∴∠ACO=∠CMO=90°,
∵∠COM=∠AOC,
∴△CMO∽△ACO,
∴,
∴OC2=OMOA,
∴OM=,
∴CM=,
∴CF=2CM=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)在一塊長為16m,寬為9m的矩形空地上新修三條寬度相同的小路,其中一條和矩形的一邊平行,另外兩條和矩形的另一邊平行,空地剩下的部分種植花草,使得花草區(qū)域占地面積為120m2.設(shè)小路的寬度為xm,則下列方程:
①(16﹣2x)(9﹣x)=120
②16×9﹣9×2x﹣(16﹣2x)x=120
③16×9﹣9×2x﹣16x+x2=120,
其中正確的是( 。
A.①B.②C.①②D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) M 為 AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過點(diǎn) C 作 CD⊥BN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB=20,MD=14,則 NE 的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正三角形的一邊平行于軸,一頂點(diǎn)在軸上,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點(diǎn)依次用表示,其中與軸、底邊與與、…均相距一個(gè)單位,則頂點(diǎn)的坐標(biāo)是__________,的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP平分∠ABC,AP⊥BP,垂足為P,連接CP,若三角形△ABC內(nèi)有一點(diǎn)M,則點(diǎn)M落在△BPC內(nèi)(包括邊界)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過△ABC的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作∠EDF=90°,與半圓交于點(diǎn)E、F,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形中,,,點(diǎn)在上,,點(diǎn)為的中點(diǎn),點(diǎn)為弧上的動點(diǎn),與的交點(diǎn)為.
(1)當(dāng)四邊形的面積最大時(shí),求;
(2)求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020的寒假是一個(gè)特殊的假期.由于“新型冠狀肺炎病毒”影響,學(xué)校的開學(xué)日期不斷延后,在這期間某中學(xué)在學(xué)校微信公眾號上積極鼓勵(lì)學(xué)生靜在家中沉下心來參加“靜讀名著”活動,活動以讀名著的本書多少設(shè)為A,B,C,D,E五個(gè)等級,(本數(shù)依次為5,4,3,2,1),該校八(3)班全體學(xué)生參加了這次靜在家中沉下心來讀名著活動,芳芳同學(xué)通過調(diào)查并將這次讀書閱讀本數(shù)的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列問題:
(1)該校八(3)班共有______學(xué)生;
(2)扇形統(tǒng)計(jì)圖中B等級所對應(yīng)扇形的圓心角等于______度;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校有學(xué)生2500人讀名著的本書在B、C級的人數(shù)一共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com