【題目】某班數(shù)學(xué)課外活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹正前方一樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處測(cè)得樹頂端D的仰角為60°,已知A點(diǎn)的高度AB2米,臺(tái)階AC的坡度i=12,且B,C,E三點(diǎn)在同一條直線上,請(qǐng)根據(jù)以上條件求出樹DE的高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

【答案】

【解析】試題分析:

如圖,過點(diǎn)AAFDE于點(diǎn)F,設(shè)DF=x,RtADF中,由∠DAF=30°可得AF=x;在RtABC中,由AC的坡度為1:2,AB=2得到BC=4;在RtCDE中,由∠DCE=60°DF=x+2可得CE= (x+2);最后由BE=BC+CE=AF建立方程,解方程即可求得x的值,從而可求得樹DE的高度.

試題解析

過點(diǎn)AAF⊥DE于點(diǎn)F,設(shè)DF=x.

RtADF中,∵∠DAF=30°,tanDAF=,

AF=x;

AC的坡度i=12,AB=2

∴BC=4;

∵AB⊥BC,DE⊥CEAF⊥DE,

四邊形ABEF為矩形,

∴EF=AB=2BE=AF,

∴DE=DF+EF=x+2,

∵在RtDCE中,tanDCE=,DCE=60°,

CE= (x+2).

EB=BC+CE=4+ (x+2)

4+ (x+2)= x,

解得x=

DE=DF+EF=

即樹的高度DE長為()..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完二元一次方程組的應(yīng)用之后,老師寫出了一個(gè)方程組如下:,要求把這個(gè)方程組賦予實(shí)際情境.

小軍說出了一個(gè)情境:學(xué)校有兩個(gè)課外小組,書法組和美術(shù)組,其中書法組的人數(shù)的二倍比美術(shù)組多5人,書法組平均每人完成了4幅書法作品,美術(shù)組平均每人完成了3幅美術(shù)作品,兩個(gè)小組共完成了40幅作品,問書法組和美術(shù)組各有多少人?

小明通過驗(yàn)證后發(fā)現(xiàn)小軍賦予的情境有問題,請(qǐng)找出問題在哪?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用無刻度直尺作圖并解答問題:

如圖,都是等邊三角形,在內(nèi)部做一點(diǎn),使得,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形的頂點(diǎn)軸上,,且,軸于,

1)求點(diǎn)的坐標(biāo);

2)連接,求的面積;

3)在軸上有一動(dòng)點(diǎn),當(dāng)的值最小時(shí),求此時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)上,于點(diǎn),的延長線交的延長線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0t2),連接PQ

1)若△BPQ△ABC相似,求t的值;

2)連接AQ、CP,若AQ⊥CP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅和小明在操場(chǎng)做游戲,他們先在地上畫了半徑分別2m3m的同心圓(如圖),蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,否則小明勝,未擲入圈內(nèi)不算,你來當(dāng)裁判.

1)你認(rèn)為游戲公平嗎?為什么?

2)游戲結(jié)束,小明邊走邊想,反過來,能否用頻率估計(jì)概率的方法,來估算某一不規(guī)則圖形的面積呢.請(qǐng)你設(shè)計(jì)方案,解決這一問題.(要求補(bǔ)充完整圖形,說明設(shè)計(jì)步驟、原理,寫出估算公式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD平分∠ACBAB于點(diǎn)D,將△CDB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CEF的位置,點(diǎn)FAC上.

1)△CDB旋轉(zhuǎn)的度數(shù);(2)連結(jié)DE,判斷DEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫出把△ABC先向下平移3個(gè)單位,再向右平移4個(gè)單位后所得到的△A1B1C1

(2)寫出A1,B1C1的坐標(biāo);

(3)求△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案