【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO.
(1)求證:△ABD≌△OBC;
(2)若AB=2,BC= ,求AD的長(zhǎng).
【答案】
(1)證明:∵AB是⊙O的直徑,
∴∠ADB=∠90°,
∵BC是⊙O的切線,
∴∠OBC=∠90°,
∵AD∥CO,
∴∠A=∠COB,
在△ABD和△OBC中
∵∠ADB=∠OBC,∠A=∠COB,
∴△ABD∽△OCB;
(2)解:由(1)知,△ABD∽△OCB,
∴ = ,即AD= ,
∵AB=2,BC= ,
∴OB=1,
∴OC= = ,
∴AD= = .
【解析】(1)根據(jù)AB為圓O的直徑,根據(jù)圓周角定理得到∠D為90°,又BC為圓O的切線,根據(jù)切線性質(zhì)得到∠CBO=90°,進(jìn)而得到這兩個(gè)角相等,又AD∥CO,根據(jù)兩直線平行,得到一對(duì)同位角相等,從而利用兩角對(duì)應(yīng)相等的兩三角形相似即可得證;(2)根據(jù)勾股定理求得OC= ,由(1)得到的相似三角形,根據(jù)相似三角形的對(duì)應(yīng)邊成比例得出 = ,即AD= ,求出AD的長(zhǎng).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用切線的性質(zhì)定理,掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來(lái)往車輛的車速(單位:千米/小時(shí))情況,則下列關(guān)于車速描述錯(cuò)誤的是( )
A. 平均數(shù)是23 B. 中位數(shù)是25 C. 眾數(shù)是30 D. 方差是129
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,-2),B(1,1),C(-3,1),△A1B1C1是△ABC向下平移2個(gè)單位,向右平移3個(gè)單位得到的.
(1)寫出點(diǎn)A1、B1、C1的坐標(biāo),并在右圖中畫出△A1B1C1;
(2)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)O,若∠A=80°,則∠BOC=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知PA、PB切⊙O于A,B兩點(diǎn),連AB,且PA,PB的長(zhǎng)是方程x2﹣2mx+3=0的兩根,AB=m.試求:
(1)⊙O的半徑;
(2)由PA,PB, 圍成圖形(即陰影部分)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC是等腰三角形,AB=AC,點(diǎn)D,E,F分別在AB,BC,AC邊上,且BD=CE,BE=CF.
(1)求證:△DEF是等腰三角形;
(2)猜想:當(dāng)∠A滿足什么條件時(shí),△DEF是等邊三角形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點(diǎn)A1 , 得∠A1;∠A1BC和∠A1CD的平分線交于點(diǎn)A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分線交于點(diǎn)A2017 , 則∠A2017=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)中,邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A,C分別在y軸、x軸的正半軸上,O為坐標(biāo)原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N.
(1)當(dāng)A點(diǎn)第一次落在直線y=x上時(shí),求點(diǎn)A所經(jīng)過(guò)的路線長(zhǎng);
(2)在旋轉(zhuǎn)過(guò)程中,當(dāng)MN和AC平行時(shí),求正方形OABC旋轉(zhuǎn)的度數(shù);
(3)設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com