【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1.線段AB的兩個(gè)端點(diǎn)在小正方形的頂點(diǎn)上。

(1)在圖中畫一個(gè)以AB為腰的等腰三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且tanB=3;

(2)在圖中畫一個(gè)以AB為底的等腰三角形ABD,點(diǎn)D在小正方形的項(xiàng)點(diǎn)上,ABD是銳角三角形.連接CD,請(qǐng)直接寫出線段CD的長(zhǎng)。

【答案】見解析

【解析】試題分析:(1)因?yàn)?/span>AB為腰、tanB=3的等腰△ABC,由此即可畫出圖形

2因?yàn)?/span>AB為底、△ABD是銳角三角形的等腰△ABC,所以點(diǎn)C在線段AB的垂直平分線上,由此即可畫出圖形利用勾股定理計(jì)算CD的長(zhǎng);

試題解析:(1)如圖所示ABC即為所求

2如圖所示ABD即為所求

CD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,AB=15,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC→CB→BA邊運(yùn)動(dòng),點(diǎn)P在AC、CB、BA邊上運(yùn)動(dòng)的速度分別為每秒3、4、5個(gè)單位,直線l從與AC重合的位置開始,以每秒 個(gè)單位的速度沿CB方向移動(dòng),移動(dòng)過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).

(1)當(dāng)t=秒時(shí),△PCE是等腰直角三角形;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動(dòng)時(shí),將△PEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn),使得點(diǎn)P的對(duì)應(yīng)點(diǎn)P1落在EF上,點(diǎn)F的對(duì)應(yīng)點(diǎn)為F1 , 當(dāng)EF1⊥AB時(shí),求t的值;
(3)作點(diǎn)P關(guān)于直線EF的對(duì)稱點(diǎn)Q,在運(yùn)動(dòng)過程中,若形成的四邊形PEQF為菱形,求t的值;
(4)在整個(gè)運(yùn)動(dòng)過程中,設(shè)△PEF的面積為S,請(qǐng)直接寫出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價(jià)各幾何?”譯文:“假設(shè)有幾個(gè)人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個(gè)人共同出錢買雞?雞的價(jià)錢是多少?”設(shè)有x個(gè)人共同買雞,根據(jù)題意列一元一次方程,正確的是(  )

A. 9x﹣11=6x+16 B. 9x+11=6x﹣16 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,ABAC=10,BC=12,DBC邊上的任意一點(diǎn),過點(diǎn)D分別作DEAB,DFAC,垂足分別為E,F,則DEDF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)正方體的表面全涂上顏色.

(1)如果把正方體的棱2等分,然后沿等分線把正方體切開,能夠得到8個(gè)小正方體,設(shè)其中3面被涂上顏色的有a個(gè),則a=   

(2)如果把正方體的棱三等分,然后沿等分線把正方體切開,能夠得到27個(gè)小正方體.設(shè)這些小正方體中有3個(gè)面涂有顏色的有a個(gè),各個(gè)面都沒有涂色的有b個(gè),則a+b=   

(3)如果把正方體的棱4等分,然后沿等分線把正方體切開,能夠得到64個(gè)小正方體.設(shè)這些小正方體中有2個(gè)面涂有顏色的有c個(gè),各個(gè)面都沒有涂色的有b個(gè),則c+b=   

(4)如果把正方體的棱n等分,然后沿等分線把正方體切開,能夠得到   個(gè)小正方體.設(shè)這些小正方體中有2個(gè)面涂有顏色的有c個(gè),各個(gè)面都沒有涂色的有b個(gè),則c+b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC.

(1)ABC的角平分線AD(尺規(guī)作圖,保留痕跡);

(2)AD的延長(zhǎng)線上任取一點(diǎn)E,連接BE,CE.

①求證:BDE≌△CDE;

②當(dāng)AE=2AD時(shí),四邊形ABEC是平行四邊形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊(duì)老師免費(fèi),學(xué)生按8折收費(fèi);乙方案:師生都按7.5折收費(fèi).

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時(shí),采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時(shí),采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,B=60°,將ABC沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)落在點(diǎn)E處,且點(diǎn)B,AE在一條直線上,CEAD于點(diǎn)F,則圖中等邊三角形共有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案