【題目】如圖,四邊形ABCD中,對(duì)角線AC⊥BD于點(diǎn)O,且AO=BO=4,CO=8,∠ADB=2∠ACB,則四邊形ABCD的面積為( )
A.48B.42C.36D.32
【答案】B
【解析】
如圖,作∠ADO的平分線DP交AC于P,作PE⊥AD于E.由△POD∽△BOC,得,設(shè)OP=x,推出OD=2x,由PE⊥AD,PO⊥DO,∠PDE=∠PDO,推出PE=OP,由 ,推出,推出AD=2(4-x),在Rt△ADO中,根據(jù)AD2=AO2+DO2,可得4(4-x)2=4x2+42,求出x的值,再根據(jù)S四邊形ABCD=S△ABD+S△BDC=BDAO+BDOC=BD(OA+OC)計(jì)算即可.
如圖,作∠ADO的平分線DP交AC于P,作PE⊥AD于E.
∵∠ADO=2∠BCO,
∴∠PDO=∠BCO,
∵∠POD=∠BOC,
∴△POD∽△BOC,
∴,設(shè)OP=x,
∴,
∴OD=2x,
∵PE⊥AD,PO⊥DO,∠PDE=∠PDO,
∴PE=OP,
∴,
∴,
∴AD=2(4-x),
在Rt△ADO中,∵AD2=AO2+DO2,
∴4(4-x)2=4x2+42,
∴x=,
∴OD=3,
∴S四邊形ABCD=S△ABD+S△BDC=BDAO+BDOC=BD(OA+OC)=×7×12=42.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是一個(gè)長(zhǎng)方形,將AD沿某一直線AF(F為折痕與CD邊的交點(diǎn))折疊,使點(diǎn)D落在BC邊上的某一點(diǎn)E處,請(qǐng)用沒有刻度的直尺與圓規(guī)找出點(diǎn)E與折痕AF,并在折痕AF上找一點(diǎn)P滿足BP+EP最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下表中的每一組值:
名稱組別 | 名稱組別 | ||||||
第1組 | 3 | 第5組 | |||||
第2組 | 5 | ||||||
第3組 | 7 | ||||||
第4組 | 8 | 第組 |
(1)根據(jù)表中前四組、、值的變化規(guī)律,第5組中 ; ;第組中 ; ; .
(2)試證明以表中每組、、為邊的三角形都是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
學(xué)習(xí)了無(wú)理數(shù)后,某數(shù)學(xué)興趣小組開展了一次探究活動(dòng):估算的近似值.
小明的方法:
∵<<,
設(shè)=3+k(0<k<1).
∴.
∴13=9+6k+k2.
∴13≈9+6k.
解得 k≈.
∴≈3+≈3.67.
問題:
(1)請(qǐng)你依照小明的方法,估算的近似值;
(2)請(qǐng)結(jié)合上述具體實(shí)例,概括出估算的公式:已知非負(fù)整數(shù)a、b、m,若a<<a+1,且m=a2+b,則≈ (用含a、b的代數(shù)式表示);
(3)請(qǐng)用(2)中的結(jié)論估算的近似值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=45°,將△BCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B的對(duì)應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE.
(1)求證:AE⊥BD;
(2)若AD=2,CD=3,試求四邊形ABCD的對(duì)角線BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:
(1)為進(jìn)一步打造“宜居北京”,某區(qū)擬在新竣工的矩形廣場(chǎng)的內(nèi)部修建一個(gè)音樂噴泉,要求音樂噴泉 到廣場(chǎng)的兩個(gè)入口 , 的距離相等,且到廣場(chǎng)管理處 的距離等于 和 之間距離的一半,,, 的位置如圖所示.請(qǐng)?jiān)诖痤}卷的原圖上利用尺規(guī)作圖作出音樂噴泉 的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)
(2)如圖,兩條公路 和 相交于 點(diǎn),在 的內(nèi)部有工廠 和 ,現(xiàn)要修建一個(gè)貨站 ,使貨站 到兩條公路 , 的距離相等,且到兩工廠 , 的距離相等,用尺規(guī)作出貨站 的位置.(要求:不寫作法,保留作圖痕跡,必須用鉛筆作圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)一步降低機(jī)動(dòng)車污染物排放,減輕重污染天氣污染發(fā)生頻次和污染程度,保障人民群眾身體健康,鄭州市從2017年12月4日0時(shí)至2017年12月31日24時(shí)起對(duì)機(jī)動(dòng)車實(shí)施單雙號(hào)限行措施,此次限行將會(huì)大大減少空氣中的排放量,指的是霧天氣時(shí)大氣中直徑小于或等于的顆粒物,將用科學(xué)記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com