【題目】如圖,AB是⊙O的直徑,弦CDAB相交,連接CO,過(guò)點(diǎn)D作⊙O的切線(xiàn),與AB的延長(zhǎng)線(xiàn)交于點(diǎn)E,若DEAC,∠BAC40°,則∠OCD的度數(shù)為(

A.65°B.30°C.25°D.20°

【答案】C

【解析】

連接OD,如圖,先利用平行線(xiàn)的性質(zhì)得∠E=BAC=40°,再根據(jù)切線(xiàn)的性質(zhì)得ODDE,則可計(jì)算出∠DOE=50°,接著根據(jù)圓周角定理得到∠BOC=2A=80°.然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算∠OCD的度數(shù).

連接OD,如圖,


DEAC
∴∠E=BAC=40°,
DE為切線(xiàn),
ODDE,
∴∠DOE=90°-40°=50°,
∵∠BOC=2A=80°
∴∠COD=80°+50°=130°,
OC=OD,
∴∠OCD=ODC=180°-130°=25°
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫(huà)面的視線(xiàn)角”α約為20°,而當(dāng)手指接觸鍵盤(pán)時(shí),肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡(jiǎn)化示意圖,其中視線(xiàn)AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長(zhǎng);

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤(pán)上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtAOB的斜邊OAx軸的正半軸上,∠OBA=90°,且tanAOB=OB=,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)B

1)求反比例函數(shù)的表達(dá)式;

2)若AMBAOB關(guān)于直線(xiàn)AB對(duì)稱(chēng),一次函數(shù)y=mx+n的圖象過(guò)點(diǎn)MA,求一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:四邊形OABC是菱形,以O為圓心作O,與BC相切于點(diǎn)D,交OAE,交OCF,連接OD,DF

1)求證:ABO的切線(xiàn);

2)連接EFOD于點(diǎn)G,若C=45°,求證:GF2=DGOE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)軸正半軸上的一動(dòng)點(diǎn),拋物線(xiàn)(是常數(shù),且過(guò)點(diǎn),與軸交于兩點(diǎn),點(diǎn)在點(diǎn)左側(cè),連接,以為邊做等邊三角形,點(diǎn)與點(diǎn)在直線(xiàn)兩側(cè).

1)求B、C的坐標(biāo);

2)當(dāng)軸時(shí),求拋物線(xiàn)的函數(shù)表達(dá)式;

3)①求動(dòng)點(diǎn)所成的圖像的函數(shù)表達(dá)式;

②連接,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC90°,∠ACB60°,將ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到DGC,再將ABC沿AB所在直線(xiàn)翻折得到ABE,連接ADBG,延長(zhǎng)BGAD于點(diǎn)F,連接CF

1)求證:四邊形ABCF是矩形;

2)若GF2,求四邊形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)PBC邊上一動(dòng)點(diǎn),PEMCPFBM,垂足為E、F

(1)當(dāng)矩形ABCD的長(zhǎng)與寬滿(mǎn)足什么條件時(shí),四邊形PEMF為矩形?猜想并證明你的結(jié)論.

(2)(1)中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),矩形PEMF變?yōu)檎叫,為什么?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)購(gòu)的日益盛行,物流行業(yè)已逐漸成為運(yùn)輸業(yè)的主力,已知某大型物流公司有AB兩種型號(hào)的貨車(chē),A型貨車(chē)的滿(mǎn)載量是B型貨車(chē)滿(mǎn)載量的2倍多4噸,在兩車(chē)滿(mǎn)載的情況下,用A型貨車(chē)載1400噸貨物與用B型貨車(chē)載560噸貨物的用車(chē)數(shù)量相同.

11A型貨車(chē)和1B型貨車(chē)的滿(mǎn)載量分別是多少?

2)該物流公司現(xiàn)有120噸貨物,可以選擇上述兩種貨車(chē)運(yùn)送,在滿(mǎn)載的情況下,有幾種方案可以一次性運(yùn)完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù) yax2+bx 的圖象與 x 軸交于點(diǎn) O0,0)和 點(diǎn) B,拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn) x3.點(diǎn) A 是拋物線(xiàn)在第一象限上的一個(gè)動(dòng)點(diǎn), 過(guò)點(diǎn) A ACx 軸,垂足為 CSAOB3SABC,AC2OCBC

1)求該二次函數(shù)的解析式;

2)拋物線(xiàn)的對(duì)稱(chēng)軸與 x 軸交于點(diǎn) M.連接 AM,點(diǎn) N 是線(xiàn)段 OA 上的一點(diǎn).當(dāng) AMN=∠AOM 時(shí),求點(diǎn) N 的坐標(biāo);

3)點(diǎn) P 是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).點(diǎn) Q y 軸上的一動(dòng)點(diǎn).當(dāng)以 A,BP,Q 四個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫(xiě)出點(diǎn) P 坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案