【題目】如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)PBC邊上一動(dòng)點(diǎn),PEMCPFBM,垂足為EF

(1)當(dāng)矩形ABCD的長(zhǎng)與寬滿足什么條件時(shí),四邊形PEMF為矩形?猜想并證明你的結(jié)論.

(2)(1)中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),矩形PEMF變?yōu)檎叫,為什么?/span>

【答案】(1) 當(dāng)AD=2AB時(shí),四邊形PEMF為矩形,理由見解析;(2) 當(dāng)PBC的中點(diǎn)時(shí),矩形PEMF為正方形,理由見解析

【解析】

(1)根據(jù)矩形的性質(zhì)推出∠A=D=90°,AB=CD,AM=DM,求出∠ABM=AMB=45°,∠DCM=DMC=45°,求出∠BMC,即可求出矩形PEMF
(2)根據(jù)AAS證△BFP≌△CEP,推出PE=PF即可.

(1)當(dāng)AD=2AB時(shí),四邊形PEMF為矩形.

證明:∵四邊形ABCD為矩形,

∴∠A=D=90°,

AD=2AB=2CD,AM=DM=AD

AB=AM=DM=CD,

∴∠ABM=AMB=45°,∠DCM=DMC=45°,

∴∠BMC=180°-45°-45°=90°

PEMC,PFBM

∴∠MEP=FPE=90°,

∴四邊形PEMF為矩形,

即當(dāng)AD=2AB時(shí),四邊形PEMF為矩形;

(2)當(dāng)PBC的中點(diǎn)時(shí),矩形PEMF為正方形.

理由是:∵四邊形PEMF為矩形,

∴∠PFM=PFB=PEC=90°

在△BFP和△CEP

,

∴△BFP≌△CEP(AAS),

PE=PF,

∵四邊形PEMF是矩形,

∴矩形PEMF是正方形,

即當(dāng)PBC的中點(diǎn)時(shí),矩形PEMF為正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知函數(shù)的圖像和反比例函數(shù)的在第一象限交于A點(diǎn),其中點(diǎn)A的橫坐標(biāo)是1

1)求反比例函數(shù)的解析式;

2)把直線平移后與軸相交于點(diǎn)B,且,求平移后直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)EA出發(fā),沿A→B→C方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)EEFAECD于點(diǎn)F,設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,CF=y,如圖2所表示的是yx的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時(shí),點(diǎn)E的運(yùn)動(dòng)路程為,則下列判斷正確的是(  )

A. ①②都對(duì) B. ①②都錯(cuò) C. ①對(duì)②錯(cuò) D. ①錯(cuò)②對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB相交,連接CO,過點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)E,若DEAC,∠BAC40°,則∠OCD的度數(shù)為(

A.65°B.30°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且對(duì)角線ACBD,垂足為點(diǎn)E,過點(diǎn)CCFAB于點(diǎn)F,交BD于點(diǎn)G

1)如圖①,連接EF,若EF平分∠AFG,求證:AEGE;

2)如圖②,連接CO并延長(zhǎng)交AB于點(diǎn)H,若CH為∠ACF的平分線,AD3,且tanFBG,求線段AH長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,ADBC,∠B=90°,AD=BC=20AB=8,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),先以每秒2cm的速度沿BA的方向運(yùn)動(dòng),到達(dá)點(diǎn)A后再以每秒4cm的速度沿AD的方向向終點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2cm的速度沿BC的方向向終點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.

(1)直接寫出BQ的長(zhǎng)(用含t的代數(shù)式表示)

(2)求△BPQ的面積S(用含t的代數(shù)式表示)

(3)求當(dāng)四邊形APCQ為平行四邊形t的值

(4)若點(diǎn)EBC中點(diǎn),直接寫出當(dāng)△BEP為等腰三角形時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一根為另一根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說法,不正確的是(

A.方程是倍根方程;

B.是倍根方程,則;

C.若方程是倍根方程,且相異兩點(diǎn)都在拋物線上,則方程的一個(gè)根為;

D.若點(diǎn)在反比例函數(shù)的圖象上,則關(guān)于的方程是倍根方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,連接、,點(diǎn)上一點(diǎn),連接,為等邊三角形,,,,則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解“停課不停學(xué)”過程中學(xué)生對(duì)網(wǎng)課內(nèi)容的喜愛程度,某校開展了一次網(wǎng)上問卷調(diào)查.隨機(jī)抽取部分學(xué)生,按四個(gè)類別統(tǒng)計(jì),其中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中提供的信息,解決下列問題:

1)這次共抽取 名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查,扇形統(tǒng)計(jì)圖中D類所在扇形的圓心角度數(shù)為

2 將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3 若該校共有3000名學(xué)生,估計(jì)該校表示“喜歡”的B類學(xué)生大約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案