【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且對角線AC⊥BD,垂足為點(diǎn)E,過點(diǎn)C作CF⊥AB于點(diǎn)F,交BD于點(diǎn)G.
(1)如圖①,連接EF,若EF平分∠AFG,求證:AE=GE;
(2)如圖②,連接CO并延長交AB于點(diǎn)H,若CH為∠ACF的平分線,AD=3,且tan∠FBG=,求線段AH長
【答案】(1)見解析;(2)
【解析】
(1)過點(diǎn)E作EF的垂線交CF于點(diǎn)I,證△EFI是等腰直角三角形,進(jìn)而可證△AEF≌△GEI,等量代換即可證明結(jié)論;
(2)連接DO并延長,交⊙O于點(diǎn)P,連接AP,先求出圓的半徑,再過點(diǎn)H作HJ⊥AC于點(diǎn)J,過點(diǎn)O作OK⊥AC于點(diǎn)K,根據(jù)三角函數(shù)可設(shè)設(shè)AJ=3t,則HJ=4t,由勾股定理可知AH=5t,根據(jù)角平分線的性質(zhì)定理及三角函數(shù)用含有t的代數(shù)式表示出HF=HJ=4t,AF=9t,CF=CJ=12t,AC=15t,CK=t,再根據(jù)平行線分線段成比例定理及勾股定理求解即可.
(1)如圖,過點(diǎn)E作EF的垂線交CF于點(diǎn)I,
∵CF⊥AB,
∴∠AFG=90°,
∵EF平分∠AFG,
∴∠EFI=45°,
∵EF⊥EI,
∴∠EIF=45°,
∴EF=EI
又∵∠EGF+∠FAE=180°,∠EGF+∠EGI=180°,
∴∠EGI=∠FAE,
∵∠AEB=∠FEI=90°,
∴∠AEF=∠GEI,
∴△AEF≌△GEI(AAS),
∴AE=GE
(2)如圖②,連接DO并延長,交⊙O于點(diǎn)P,連接AP,
則∠ABD=∠P,
∵DP為⊙O的直徑,
∴∠PAD=90°,
∵tan∠FBG=,
∴tanP==,
又∵AD=3,
∴AP=4,PD=5,
∴OD=
∴OC=OD=
如圖③,過點(diǎn)H作HJ⊥AC于點(diǎn)J,過點(diǎn)O作OK⊥AC于點(diǎn)K,
∵HJ⊥AC,BD⊥AC,
∴HJ∥BD,
∴∠ABD=∠AHJ,則tan∠AHJ=,
設(shè)AJ=3t,則HJ=4t,由勾股定理可知AH=5t,
∵CH是∠ACF的平分線,且HF⊥CF,HJ⊥AC,
∴HF=HJ=4t,
∴AF=AH+HF=9t,
設(shè)CF=x,則CJ=x,
∵∠BFG=∠GEC,∠FGB=∠EGC,
∴∠FBG=∠ECG,
∴tan∠FCJ===,
解得x=12t,
∴CF=CJ=12t,
∴AC=15t,
∴CK=t
又∵OK∥HJ,
∴=,
∴OK==t,
∴在Rt△OCK中,OK2+KC2=OC2,即(t)2+(t)2=()2,
解得t= (負(fù)值舍去),
∴AH=5t=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是等邊內(nèi)一點(diǎn),,以點(diǎn)B為旋轉(zhuǎn)中心,將線段BO逆時(shí)針旋轉(zhuǎn)得到線段,連接,則下列結(jié)論:
①可以由繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到
②連接,則
③
④
其中正確的結(jié)論是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)思考:已知等腰三角形ABC的兩邊分別是方程x2﹣7x+10=0的兩個(gè)根,求等腰三角形ABC三條邊的長各是多少?下邊是涵涵同學(xué)的作業(yè),老師說他的做法有錯(cuò)誤,請你找出錯(cuò)誤之處并說明錯(cuò)誤原因.
涵涵的作業(yè)
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
∵b2﹣4ac=9>0
∴x==
∴x1=5,x2=2
所以,當(dāng)腰為5,底為2時(shí),等腰三角形的三條邊為5,5,2.
當(dāng)腰為2,底為5時(shí),等腰三角形的三條邊為2,2,5.
探究應(yīng)用:請解答以下問題:
已知等腰三角形ABC的兩邊是關(guān)于x的方程x2﹣mx+﹣=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m=2時(shí),求△ABC的周長;
(2)當(dāng)△ABC為等邊三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是軸正半軸上的一動(dòng)點(diǎn),拋物線(是常數(shù),且過點(diǎn),與軸交于兩點(diǎn),點(diǎn)在點(diǎn)左側(cè),連接,以為邊做等邊三角形,點(diǎn)與點(diǎn)在直線兩側(cè).
(1)求B、C的坐標(biāo);
(2)當(dāng)軸時(shí),求拋物線的函數(shù)表達(dá)式;
(3)①求動(dòng)點(diǎn)所成的圖像的函數(shù)表達(dá)式;
②連接,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=4,以點(diǎn)B為圓心,BD長為半徑的扇形EBF與AD,CD交于點(diǎn)G,H,且G,H分別為AD,CD邊上的中點(diǎn),則陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)P是BC邊上一動(dòng)點(diǎn),PE⊥MC,PF⊥BM,垂足為E、F.
(1)當(dāng)矩形ABCD的長與寬滿足什么條件時(shí),四邊形PEMF為矩形?猜想并證明你的結(jié)論.
(2)在(1)中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),矩形PEMF變?yōu)檎叫,為什么?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABE和△ACF中,EB交AC于點(diǎn)M,交FC于點(diǎn)D,AB交FC于點(diǎn)N,∠E=∠F=90°,∠B=∠C,AE=AF.下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中,正確的是_________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合“一帶一路”國家倡議,某鐵路貨運(yùn)集裝箱物流園區(qū)正式啟動(dòng)了2期擴(kuò)建工程一項(xiàng)地基基礎(chǔ)加固處理工程由2、8兩個(gè)工程公司承擔(dān)建設(shè),己知2工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要180天工程公司單獨(dú)施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項(xiàng)工程.
(1)求工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要多少天?
(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會(huì)決定將此項(xiàng)工程劃包成兩部分,要求兩工程公司同時(shí)開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中,均為正整數(shù),且,,求、兩個(gè)工程公司各施工建設(shè)了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)D為已知拋物線的對稱軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);
(3)若直線l過點(diǎn)E(4,0),M為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com