【題目】如圖,已知和中,,,,,;
(1)請說明的理由;
(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;
(3)求的度數(shù).
【答案】(1)見解析 (2)繞點順時針旋轉(zhuǎn),可以得到 (3)
【解析】
(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;
(2)通過觀察可知△ABC繞點A順時針旋轉(zhuǎn)25°,可以得到△AEF;
(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根據(jù)三角形外角的性質(zhì)可求∠AMB.
∵,,,
∴,
∴,,
∴,
∴;
通過觀察可知繞點順時針旋轉(zhuǎn),可以得到;
由知,,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學(xué)生進行摸球試驗,每次摸出一個球,放回、攪勻,下表是活動進行中的一組統(tǒng)計數(shù)據(jù),
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率 | 0.230 | 0.231 | 0.300 | 0.260 | 0.254 |
袋中白球的個數(shù)約為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點 B(﹣1,0),C(2,3),拋物線與y軸的焦點A,與x軸的另一個焦點為D,點M為線段AD上的一動點,設(shè)點M的橫坐標(biāo)為t.
(1)求拋物線的表達式;
(2)過點M作y軸的平行線,交拋物線于點P,設(shè)線段PM的長為1,當(dāng)t為何值時,1的長最大,并求最大值;(先根據(jù)題目畫圖,再計算)
(3)在(2)的條件下,當(dāng)t為何值時,△PAD的面積最大?并求最大值;
(4)在(2)的條件下,是否存在點P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB為⊙O的一條弦,以AB為直角邊作等腰直角△ABC,直線AC恰好是⊙O的切線,點D為⊙O上的一點,連接DA,DB,DC,若DA=3,DB=4,則DC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面上,對于給定的線段AB和點C,若平面上的點P(可以與點C重合)滿足,∠APB=∠ACB.則稱點P為點C關(guān)于直線AB的聯(lián)絡(luò)點.
在平面直角坐標(biāo)系xOy中,已知點A(2,0),B(0,2),C(﹣2,0).
(1)在P1(2,2),P(1,0),R(1+,1)三個點中,是點O關(guān)于線段AB的聯(lián)絡(luò)點的是 .
(2)若點P既是點O關(guān)于線段AB的聯(lián)絡(luò)點,同時又是點B關(guān)于線段OA的聯(lián)絡(luò)點,求點P的橫坐標(biāo)m的取值范圍;
(3)直線y=x+b(b>0)與x軸,y軸分交于點M,N,若在線段BC上存在點N關(guān)于線段OM的聯(lián)絡(luò)點,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某校在基地參加社會實踐話動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:
請根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:若在一個兩位正整數(shù)N的個位數(shù)字與十位數(shù)字之間添上數(shù)字6,組成一個新的三位數(shù),我們稱這個三位數(shù)為N的“至善數(shù)”,如34的“至善數(shù)為364”;若將一個兩位正整數(shù)M加6后得到一個新數(shù),我們稱這個新數(shù)為M的“明德數(shù)”,如34的“明德數(shù)為40”.
(1)30的“至善數(shù)”是 ,“明德數(shù)”是 .
(2)求證:對任意一個兩位正整數(shù)A,其“至善數(shù)”與“明德數(shù)”之差能被9整除;
(3)若一個兩位正整數(shù)B的明德數(shù)的各位數(shù)字之和是B的至善數(shù)各位數(shù)字之和的一半,求B的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過AB的中點D.若⊙O的半徑為,AB=4,則BC的長是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com