一透明的敞口正方體容器ABCD裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖①所示).

探究如圖①,液面剛好過棱CD,并與棱B交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖②所示.解決問題:

(1)CQBE的位置關(guān)系是________,BQ的長是________dm;

(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)

(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展在圖①的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖③或圖④是其正面示意圖.若液面與棱CCB交于點P,設(shè)PCx,BQy.分別就圖③和圖④求yx的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.

[溫馨提示:下頁還有題!]

延伸在圖④的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖⑤,隔板高NM=1 dm,BMCM,NMBC.繼續(xù)向右緩慢旋轉(zhuǎn),當α=60°時,通過計算,判斷溢出容器的液體能否達到4 dm3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關(guān)系是
CQ∥BE
CQ∥BE
,BQ的長是
3
3
dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(帶解析) 題型:解答題

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關(guān)系是       ,BQ的長是       dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展 在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.

延伸 在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(解析版) 題型:解答題

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).

探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如

圖2所示.解決問題:

(1)CQ與BE的位置關(guān)系是       ,BQ的長是       dm;

(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)

(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展 在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.

延伸 在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關(guān)系是______,BQ的長是______dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=數(shù)學(xué)公式,tan37°=數(shù)學(xué)公式

拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關(guān)系是______,BQ的長是______dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=

拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

同步練習(xí)冊答案