【題目】如圖1,DE是⊙O的直徑,點A、C是直徑DE上方半圓上的兩點,且AO⊥CO.連接AE,CD相交于點F,點B是直徑DE下方半圓上的任意一點,連接AB交CD于點G,連接CB交AE于點H.
(1)∠ABC= ;
(2)證明:△CFH∽△CBG;
(3)若弧DB為半圓的三分之一,把∠AOC繞著點O旋轉(zhuǎn),使點C、O、B在一直線上時,如圖2,求的值.
【答案】(1)45°;(2)見解析;(3).
【解析】
(1),則°;
(2)如圖1,,,即可求解;
(3)設(shè),則,,則,同理可得:FC=R,由,則.
(1) ∵,
∴,
故答案為:;
(2)如圖,
,,
∴,
,
∴,
,
∴;
(3)如圖,設(shè)∠AOD為∠1,∠COE為∠2,,圓的半徑為R,
∵弧DB為半圓的三分之一,
∴,則,
∵AO⊥CO,則,
∴,
∴,
在OE上取一點K,使HK=EK,則,
設(shè),
∵,,
∴,
在中,,,,
∴,
解得:,
,
則CH=CO﹣OH==(﹣1)R,
在中,,,CH=(﹣1)R,
如圖,作HP⊥DC于P,
在中,,,CH=(﹣1)R,
∴,,
在中,,,
∴,
∴,
∵△CFH∽△CBG,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°
(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);
(2)綜合應(yīng)用:在(1)的條件下,連接DE
①求證:CD=DE;
②若sinA=,AC=6,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達式;
(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上O,A兩點的距離為4,一動點P從點A出發(fā),按以下規(guī)律跳動:第1次跳動到AO的中點A1處,第2次從A1點跳動到A1O的中點A2處,第3次從A2點跳動到A2O的中點A3處,按照這樣的規(guī)律繼續(xù)跳動到點A4,A5,A6,…,An.(n≥3,n是整數(shù))處,那么線段AnA的長度為________(n≥3,n是整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y1=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標(biāo)是A(1,n),與x軸的一個交點B(4,0),直線y2=mx+d(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①3a+b=0,②方程ax2+bx+c+1=n有兩個相等的實數(shù)根,③b2=4a(c﹣n),④當(dāng)1<x<4時,有y2>y1,⑤ax2+bx≤a+b,其中正確的結(jié)論是____(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上一動點,過點作于點.連接,與關(guān)于所在的直線對稱,且所在的直線與直線相交于點,直線與直線相交于點.若點到的斜邊和一條直角邊的距離恰好相等,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅燈籠,象征著闔家團圓,紅紅火火,掛燈籠成為我國的一種傳統(tǒng)文化.小明在春節(jié)前購進甲、乙兩種紅燈籠,用3120元購進甲燈籠與用4200元購進乙燈籠的數(shù)量相同,已知乙燈籠每對進價比甲燈籠每對進價多9元.
(1)求甲、乙兩種燈籠每對的進價;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),乙燈籠每對售價50元時,每天可售出98對,售價每提高1元,則每天少售出2對:物價部門規(guī)定其銷售單價不高于每對65元,設(shè)乙燈籠每對漲價x元,小明一天通過乙燈籠獲得利潤y元.
①求出y與x之間的函數(shù)解析式;
②乙種燈籠的銷售單價為多少元時,一天獲得利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com