【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1ax+b的圖象與反比例函數(shù)y2的圖象交于點(diǎn)A(12)B(2,m)

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)請(qǐng)直接寫出y1≥y2時(shí)x的取值范圍;

(3)過(guò)點(diǎn)BBEx軸,ADBE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若∠DAC30°,求點(diǎn)C的坐標(biāo).

【答案】1反比例函數(shù)的解析式為y2;一次函數(shù)解析式為y1x+1.(2)當(dāng)﹣2x0x1時(shí),y1y2.(3)點(diǎn)C的坐標(biāo)為(1,﹣1)或(1+,﹣1).

【解析】

1)由點(diǎn)A的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出k值,由點(diǎn)B的橫坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出m值,進(jìn)而可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出一次函數(shù)解析式;

2)觀察函數(shù)圖象,由兩函數(shù)圖象的上下位置關(guān)系結(jié)合兩交點(diǎn)的坐標(biāo),即可找出y1y2時(shí)x的取值范圍;

3)由點(diǎn)AB的縱坐標(biāo)可得出AD的長(zhǎng)度及點(diǎn)D的坐標(biāo),在RtADC中,由∠DAC30°可得出CD的長(zhǎng)度,再結(jié)合點(diǎn)D的坐標(biāo)即可求出點(diǎn)C的坐標(biāo).

1)∵點(diǎn)A1,2)在反比例函數(shù)y2的圖象上,

2,

k1×22

∴反比例函數(shù)的解析式為y2

∵點(diǎn)B(﹣2,m)在反比例函數(shù)y2的圖象上,

m=﹣1,

∴點(diǎn)B的坐標(biāo)為(﹣2,﹣1).

A1,2),B(﹣2,﹣1)代入y1ax+b得:

解得:

∴一次函數(shù)解析式為y1x+1

2)由函數(shù)圖象可知:當(dāng)﹣2≤x0x≥1時(shí),y1y2

3)由題意得:AD2﹣(﹣1)=3,點(diǎn)D的坐標(biāo)為(1,﹣1).

RtADC中,tanDAC,即,

解得:CD=

當(dāng)點(diǎn)C在點(diǎn)D的左側(cè)時(shí),點(diǎn)C的坐標(biāo)為(1,﹣1);

當(dāng)點(diǎn)C在點(diǎn)D的右側(cè)時(shí),點(diǎn)C的坐標(biāo)為(1+,﹣1).

∴點(diǎn)C的坐標(biāo)為(1,﹣1)或(1+,﹣1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ADABC的高,且BDCD

(1)如圖1,求證:∠BADCAD;

(2)如圖2,點(diǎn)EAD上,連接BE,將ABE沿BE折疊得到ABEABAC相交于點(diǎn)F,若BEBC,求∠BFC的大;

(3)如圖3,在(2)的條件下,連接EF,過(guò)點(diǎn)CCGEF,交EF的延長(zhǎng)線于點(diǎn)G,若BF=10,EG=6,求線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是用8個(gè)大小相同的小正方體搭成的幾何體,僅在該幾何體中取走一塊小正方體,使得到的新幾何體同時(shí)滿足兩個(gè)要求:(1)從正面看到的形狀和原幾何體從正面看到的形狀相同;(2)從左面看到的形狀和原幾何體從左面看到的形狀也相同.在不改變其它小正方體位置的前提下,可取走的小正方體的標(biāo)號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知△ABC中,∠ACB90°,CACB,點(diǎn)D,E分別在CB,CA上,且CDCE,連AD,BEFAD的中點(diǎn),連CF

1)求證:CFBE,且CFBE

2)將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角(如圖2),其它條件不變,此時(shí)(1)中的結(jié)論是否仍成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,若∠ADB是直角,求證:四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過(guò)3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線上有A、B兩個(gè)觀測(cè)點(diǎn),BA的正東方向,AB4km.從A測(cè)得燈塔C在北偏東53°方向上,從B測(cè)得燈塔C在北偏西45°方向上,求燈塔C與觀測(cè)點(diǎn)A的距離(精確到0.1km)(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75sin53°≈0.80,cos53°≈0.60tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,OAB在平面直角坐標(biāo)系中的位置如圖所示.解答問(wèn)題:

(1)請(qǐng)按要求對(duì)ABO作如下變換:

OAB向下平移2個(gè)單位,再向左平移3個(gè)單位得到O1A1B1;

以點(diǎn)O為位似中心,位似比為2:1,將ABC在位似中心的異側(cè)進(jìn)行放大得到OA2B2

(2)寫出點(diǎn)A1,A2的坐標(biāo): , ;

(3)OA2B2的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若干個(gè)半徑為1個(gè)單位長(zhǎng)度,圓心角是的扇形按圖中的方式擺放,動(dòng)點(diǎn)K從原點(diǎn)O出發(fā),沿著半徑OAABBC半徑CD半徑DE的曲線運(yùn)動(dòng),若點(diǎn)K在線段上運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,在弧線上運(yùn)動(dòng)的速度為每秒個(gè)單位長(zhǎng)度,設(shè)第n秒運(yùn)動(dòng)到點(diǎn)K,為自然數(shù),則的坐標(biāo)是____的坐標(biāo)是____

查看答案和解析>>

同步練習(xí)冊(cè)答案