【題目】(1)已知一個角的補角比它的余角的 3 倍大 30°,求這個角的度數(shù);
(2)如圖,點 C、D在線段 AB上, D是線段 AB的中點, AC AD , AB6,求線段 CD的長.
【答案】(1)60°;(2)5.
【解析】
(1) 設這個角為x,則補角為(180°-x),余角為(90°-x),再由補角比它的余角的3倍多30°,可得方程,解出即可;(2) 根據(jù)D是線段AB的中點可得AD=BD=AB=3,再根據(jù)AC=AD=2,求出CD即可得出答案.
(1) 設這個角為x,則補角為(180°-x),余角為(90°-x),
由題意得,180°-x=3(90°-x)+30°,
解得:x=60.
即這個角的度數(shù)是60°.
(2) :∵D是線段AB的中點,
∴AD=BD=AB=×6=3,
∵AC=AD,
∴AC=AD=×3=1,
∴CD=AD-AC=6-1=5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,點A(﹣4,1)、B(0,1)、C(0,3),
(1)過O的直線l和經(jīng)過AC的直線平行,求直線l表達式;
(2)已知在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.在直線l上是否存在點P為和諧點?若存在,求出點P坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(3,0),以A為圓心作⊙A與Y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A及點C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個交點為D,過D作⊙A的切線DE,E為切點,求DE的長;
(3)點F是切線DE上的一個動點,當△BFD與△EAD相似時,求出BF的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y = 的圖象經(jīng)過點A(1,-3),一次函數(shù)y =kx +b的圖象經(jīng)過點A與點C(0,-4),且與反比例函數(shù)的圖象相交于另一點B.試確定點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上 A點表示的數(shù)是 a ,B 點表示的數(shù)是b ,且 ab滿足|a 8|b-220.動線段 CD=4(點 D 在點 C 的右側(cè)),從點 C與點 A重合的位置出發(fā),以每秒 2 個單位的速度向右運動,運動時間為 t秒.
(1)求a,b的值, 運動過程中,點 D 表示的數(shù)是多少,(用含有 t 的代數(shù)式表示)
(2)在 B、C、D 三個點中,其中一個點是另外兩個點為端點的線段的中點,求 t 的值;
(3)當線段 CD 在線段 AB上(不含端點重合)時,如圖,圖中所有線段的和記作為 S, 則 S的值是否隨時間 t 的變化而變化?若變化,請說明理由;若不變,請求出 S值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝用三角形解釋二項和的乘方規(guī)律,稱之為“楊輝三角”,這個三角形給出了(a+b)n(n═1,2,3,4,…)的展開式的系數(shù)規(guī)律(按n的次數(shù)由大到小的順序):
請依據(jù)上述規(guī)律,寫出(x﹣2)2018展開式中含x2017項的系數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在數(shù)軸上表示的數(shù)是-8,點在數(shù)軸上表示的數(shù)是16.若點以6個單位長度/秒的速度向右勻速運動,同時點以2個單位長度/秒的速度向左勻速運動.問:當時,運動時間為多少秒?
A. 2秒B. 13.4秒C. 2秒或4秒D. 2秒或6秒
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com