【題目】2018年9月17日世界人工智能大會在上海召開,人工智能的變革力在教育、制造等領域加速落地. 在某市舉辦的一次中學生機器人足球賽中,有四個代表隊進入決賽,決賽中,每個隊分別與其它三個隊進行主客場比賽各一場(即每個隊要進行6場比賽),以下是積分表的一部分.
排名 | 代表隊 | 場次 (場) | 勝 (場) | 平 (場) | 負 (場) | 凈勝球 (個) | 進球 (個) | 失球 (個) | 積分 (分) |
1 | A | 6 | 1 | 6 | 12 | 6 | 22 | ||
2 | B | 6 | 3 | 2 | 1 | 0 | 6 | 6 | 19 |
3 | C | 6 | 3 | 1 | 2 | 2 | 9 | 7 | 17 |
4 | D | 6 | 0 | 0 | 6 | m | 5 | 13 | 0 |
(說明:積分=勝場積分+平場積分+負場積分)
(1)D代表隊的凈勝球數(shù)m= ;
(2)本次決賽中,勝一場積 分,平一場積 分,負一場積 分;
(3)此次競賽的獎金分配方案為:進入決賽的每支代表隊都可以獲得參賽獎金6000元;另外,在決賽期間,每勝一場可以再獲得獎金2000元,每平一場再獲得獎金1000元.
請根據(jù)表格提供的信息,求出冠軍A隊一共能獲得多少獎金.
【答案】(1)-8; (2)5,2,0;(3)15000元.
【解析】
(1)凈勝球數(shù)等于進的球減去輸?shù)那颍?/span>2)根據(jù)BCD隊的成績進行推算即可得到答案(3)先求出A隊勝了幾場,平了幾場,就可以求出多少獎金.
解:(1)凈勝球數(shù)等于進的球減去輸?shù)那颍?/span>m=5-13=-8;
(2)根據(jù)BCD隊的成績進行推算,D對負了6場,得分為0,說明比賽負了不得分,將B隊C隊的成績列二元一次方程解答可以得出,勝一場5分,平一場2分;
(3)先根據(jù)A隊的積分求出A隊勝了4場,平了一場,負了一場,然后獎金為6000+2000+1000=15000元.
科目:初中數(shù)學 來源: 題型:
【題目】一個三位數(shù),若十位上的數(shù)字是百位數(shù)字與個位數(shù)字的和,我們稱這個三位數(shù)叫“圣誕數(shù)”,并且把這個“圣誕數(shù)”的前兩位組成的兩位數(shù)記為m,后兩位組成的兩位數(shù)記為n,并規(guī)定d=。如一個三位數(shù)385,3+5=8,385是“圣誕數(shù)”,且m=38,n=85,則d==.
(1)寫出最小的“圣誕數(shù)”;
(2)求證:任意一個“圣誕數(shù)”是11的倍數(shù);
(3)求出所有能被8整除的“圣誕數(shù)”,并直接寫出這些“圣誕數(shù)”中d的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 在數(shù)學課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形.求作:菱形AECF,使點E,F(xiàn)分別在BC,AD上.
小凱的作法如下:
(i)連接AC;
(ii)作AC的垂直平分線EF分別交BC,AD于E,F(xiàn);
(iii)連接AE,CF.
所以四邊形AECF是菱形.
老師說:“小凱的作法正確.”
請回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角板是學習數(shù)學的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).
(1)寫出y與x之間的函數(shù)關系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù) y1=kx+b 與 y2=x+a 的圖象如圖所示,則下列結論:①k<0;②a<0,b<0;③當 x=3 時,y1=y2;④不等式 kx+b>x+a 的解集是 x<3,其中正確的結論有_______.(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A. 1個; B. 2個; C. 3個; D. 4個;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com