【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B.
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動時(shí),直線MO上是否存在這樣的點(diǎn)Q,使得△OBQ與△OAP面積相等?如果存在,請求出點(diǎn)的坐標(biāo),如果不存在,請說明理由;
(3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動時(shí),作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長的最小值.
【答案】(1)y=x,;(2)存在,Q1(2,1)和Q2(﹣2,﹣1);(3)2+4
【解析】
(1)正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),待定系數(shù)法可求它們解析式;
(2)由點(diǎn)Q在y=x上,設(shè)出Q點(diǎn)坐標(biāo),表示△OBQ,由反比例函數(shù)圖象性質(zhì),可知△OAP面積為1,則根據(jù)面積相等可構(gòu)造方程,問題可解;
(3)因?yàn)樗倪呅蜲PCQ是平行四邊形,所以O(shè)P=CQ,OQ=PC,而點(diǎn)P(-1,-2)是定點(diǎn),所以O(shè)P的長也是定長,所以要求平行四邊形OPCQ周長的最小值就只需求OQ的最小值.
解:(1)設(shè)正比例函數(shù)解析式為y=kx,
將點(diǎn)M(﹣2,﹣1)坐標(biāo)代入得k=,所以正比例函數(shù)解析式為y=x,
同樣可得,反比例函數(shù)解析式為;
(2)當(dāng)點(diǎn)Q在直線OM上運(yùn)動時(shí),
設(shè)點(diǎn)Q的坐標(biāo)為Q(m,m),
于是S△OBQ=OBBQ=×m×m=m2,
而S△OAP=|(﹣1)×(﹣2)|=1,
所以有,m2=1,解得m=±2,
所以點(diǎn)Q的坐標(biāo)為Q1(2,1)和Q2(﹣2,﹣1);
(3)因?yàn)樗倪呅?/span>OPCQ是平行四邊形,所以OP=CQ,OQ=PC,
而點(diǎn)P(﹣1,﹣2)是定點(diǎn),所以OP的長也是定長,
所以要求平行四邊形OPCQ周長的最小值就只需求OQ的最小值,
因?yàn)辄c(diǎn)Q在第一象限中雙曲線上,所以可設(shè)點(diǎn)Q的坐標(biāo)為Q(n,),
由勾股定理可得OQ2=n2+=(n﹣)2+4,
所以當(dāng)(n﹣)2=0即n=0時(shí),OQ2有最小值4,
又因?yàn)?/span>OQ為正值,所以OQ與OQ2同時(shí)取得最小值,
所以OQ有最小值2,由勾股定理得OP=,
所以平行四邊形OPCQ周長的最小值是2(OP+OQ)=2(+2)=2+4.
(或因?yàn)榉幢壤瘮?shù)是關(guān)于y=x對稱,所以當(dāng)Q在反比例函數(shù)時(shí)候,OQ最短的時(shí)候,就是反比例與y=x的交點(diǎn)時(shí)候,聯(lián)立方程組即可得到點(diǎn)Q坐標(biāo))
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動到點(diǎn)的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AM∥BN,C是BN上一點(diǎn), BD平分∠ABN且過AC的中點(diǎn)O,交AM于點(diǎn)D,DE⊥BD,交BN于點(diǎn)E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為3,∠BAD=60°,點(diǎn)E、F在對角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF=1,則DE+BF最小值為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等
C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),.
求一次函數(shù)的表達(dá)式;
若該商場獲得利潤為元,試寫出利潤與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車場地ABCD,在AB和BC邊各有一個(gè)2米寬的小門(不用鐵柵欄).設(shè)矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長為40米,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)在(1)的條件下,求S與x的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場地的面積為192平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為2cm的P的圓心在射線OA上,且與點(diǎn)O的距離為6cm,如果P以1cm/s的速度沿直線AB由A向B的方向移動,那么P與直線CD相切時(shí)☉P運(yùn)動的時(shí)間是( )
A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運(yùn)動的路徑長為18,則△ABC的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com