【題目】如圖,在ABC中,ACBCAB345,⊙O沿著ABC的內(nèi)部邊緣滾動(dòng)一圈,若⊙O的半徑為1,且圓心O運(yùn)動(dòng)的路徑長(zhǎng)為18,則ABC的周長(zhǎng)為_____

【答案】30

【解析】

如圖,首先利用勾股定理判定△ABC是直角三角形,由題意得圓心O所能達(dá)到的區(qū)域是△DEG,且與△ABC三邊相切,設(shè)切點(diǎn)分別為G、H、P、QM、N,連接DH、DG、EP、EQFM、FN,根據(jù)切線性質(zhì)可得:AGAH,PCCQ,BNBMDG、EP分別垂直于ACEQ、FN分別垂直于BC,FMDH分別垂直于AB,繼而則有矩形DEPG、矩形EQNF、矩形DFMH,從而可知DEGP,EFQN,DFHM,DEGPDFHM,EFQN,∠PEF90°,根據(jù)題意可知四邊形CPEQ是邊長(zhǎng)為1的正方形,根據(jù)相似三角形的判定可得DEFACB,根據(jù)相似三角形的性質(zhì)可知:DEEFFDACCBBA345,進(jìn)而根據(jù)圓心O運(yùn)動(dòng)的路徑長(zhǎng)列出方程,求解算出DEEF、FD的長(zhǎng),根據(jù)矩形的性質(zhì)可得:GPQN、MH的長(zhǎng),根據(jù)切線長(zhǎng)定理可設(shè):AGAHx,BNBMy,根據(jù)線段的和差表示出AC、BC、AB的長(zhǎng),進(jìn)而根據(jù)ACCBBA345列出比例式,繼而求出x、y的值,進(jìn)而即可求解ABC的周長(zhǎng).

ACCBBA345,

設(shè)AC3aCB4a,BA5aa0

∴△ABC是直角三角形,

設(shè)⊙O沿著ABC的內(nèi)部邊緣滾動(dòng)一圈,如圖所示,

連接DE、EF、DF,

設(shè)切點(diǎn)分別為G、H、P、QM、N,

連接DH、DG、EP、EQFM、FN,

根據(jù)切線性質(zhì)可得:

AGAHPCCQ,BNBM

DG、EP分別垂直于AC,EQ、FN分別垂直于BC,FMDH分別垂直于AB,

DGEP,EQFN,FMDH,

∵⊙O的半徑為1

DGDHPEQEFNFM1,

則有矩形DEPG、矩形EQNF、矩形DFMH,

DEGPEFQN,DFHM,DEGPDFHM,EFQN,PEF90°

又∵∠CPE=∠CQE90°, PEQE1

∴四邊形CPEQ是正方形,

PCPEEQCQ1,

∵⊙O的半徑為1,且圓心O運(yùn)動(dòng)的路徑長(zhǎng)為18,

DE+EF+DF18

DEAC,DFAB,EFBC,

∴∠DEF=∠ACB,∠DFE=∠ABC,

∴△DEF∽△ABC

DEEFDFACBCAB345

設(shè)DE3kk0),則EF4k,DF5k

DE+EF+DF18,

3k+4k+5k18,

解得k

DE3k,EF4k6DF5k,

根據(jù)切線長(zhǎng)定理,

設(shè)AGAHx,BNBMy,

ACAG+GP+CPx++1x+55

BCCQ+QN+BN1+6+yy+7,

ABAH+HM+BMx++yx+y+75,

ACBCAB345,

∴(x+55):(y+7):(x+y+75)=345

解得x2,y3

AC75,BC10AB125,

AC+BC+AB30

所以ABC的周長(zhǎng)為30

故答案為30

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動(dòng)點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;

2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動(dòng)時(shí),直線MO上是否存在這樣的點(diǎn)Q,使得OBQOAP面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;

3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng)時(shí),作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2-2x-3的頂點(diǎn)為A,x軸于B,D兩點(diǎn),y軸交于點(diǎn)C.

(1)求線段BD的長(zhǎng);

(2)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為提倡居民節(jié)約用水,規(guī)定每三口之家每月用水量不得超過(guò)20噸,超過(guò)部分需加價(jià)收費(fèi).已知小麗家有三口人,今年4月份用水24噸,交水費(fèi)46元;5月份用水29噸,交水費(fèi)58.5元.你能知道該市在限定量以內(nèi)的水費(fèi)每噸多少元,超過(guò)部分的水費(fèi)每噸多少元嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中ADMN,已知矩形菜園的一邊靠墻,另三邊一共用了46米木欄.

1)若a26,所圍成的矩形菜園的面積為280平方米,求所利用舊墻AD的長(zhǎng);

2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,AB為⊙O的直徑,點(diǎn)P在⊙O上,過(guò)點(diǎn)PPQAB,垂足為點(diǎn)Q.說(shuō)明APQ∽△ABP;

2)如圖②,⊙O的半徑為7,點(diǎn)P在⊙O上,點(diǎn)Q在⊙O內(nèi),且PQ4,過(guò)點(diǎn)QPQ的垂線交⊙O于點(diǎn)A、B.設(shè)PAxPBy,求yx的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市在創(chuàng)建全國(guó)文明城市的過(guò)程中,某社區(qū)在甲樓的處與處之間懸掛了一幅宣傳條幅,在乙樓頂部點(diǎn)測(cè)得條幅頂端點(diǎn)的仰角為45°,測(cè)得條幅底端點(diǎn)的俯角為30°,若甲、乙兩樓之間的水平距離12米.

1)甲樓比乙樓高多少米?

2)求條幅AE的長(zhǎng)度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)的圖象過(guò)格點(diǎn)(網(wǎng)格線的交點(diǎn))

1)求反比例函數(shù)的解析式;

2)若點(diǎn)是該雙曲線第一象限上的一點(diǎn),且

填空:①直線的解析式為_______;②點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】丹尼斯超市進(jìn)了一批成本為 8 /個(gè)的文具盒. 調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià) x(/個(gè))的關(guān)系如圖所示:

(1)求這種文具盒每個(gè)星期的銷售量 y(個(gè))與它的定價(jià) x(/個(gè))之間的函數(shù)關(guān)系式(不必寫出自變量 x的取值范圍);

(2)每個(gè)文具盒的定價(jià)是多少元,超市每星期銷售這種文具盒 (不考慮其他因素)可或得的利潤(rùn)為 1200 ?

(3)若該超市每星期銷售這種文具盒的銷售量小于 115 個(gè), 且單件利潤(rùn)不低于 4 (x 為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少 元時(shí),超市每星期利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案