【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與線段AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠AOF的度數(shù)是( )
A.105° B.110° C.115° D.120°
【答案】A.
【解析】
試題分析:如圖,連接OB,∵OD垂直平分AB,∴AO=BO,∴∠OAB=∠OBA.∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°.∵OA平分∠BAC,∴∠BAO=∠CAO=∠BAC=25°,∴∠OBA=25°,∴∠OBC=40°.在△ABO和△ACO中,∵AB=AC,∠BAO=∠CAO,AO=AO,∴△ABO≌△ACO(SAS),∴BO=CO,∴∠OBC=∠OCB=40°.∵△EOF與△ECF關(guān)于EF對稱,∴△EOF≌△ECF,∴OF=CF,∴∠FCO=∠FOC=25°,∴∠AFO=50°,∴∠AOF=180°﹣∠OAF﹣∠AFO=105°.故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子品牌商下設(shè)臺式電腦部、平板電腦部、手機(jī)部等.2018年的前五個月該品牌全部商品銷售額共計(jì)600萬元.下表表示該品牌商2018年前五個月的月銷售額(統(tǒng)計(jì)信息不全).圖1表示該品牌手機(jī)部各月銷售額占該品牌所有商品當(dāng)月銷售額的百分比情況統(tǒng)計(jì)圖.
品牌月銷售額統(tǒng)計(jì)表(單位:萬元)
月份 | 1月 | 2月 | 3月 | 4月 | 5月 |
品牌月銷售額 | 180 | 90 | 115 | 95 |
()該品牌5月份的銷售額是 萬元;
()手機(jī)部5月份的銷售額是 萬元;
小明同學(xué)觀察圖1后認(rèn)為,手機(jī)部5月份的銷售額比手機(jī)部4月份的銷售額減少了,你同意他的看法嗎?請說明理由;
()該品牌手機(jī)部有A、B、C、D、E五個機(jī)型,圖2表示在5月份手機(jī)部各機(jī)型銷售額占5月份手機(jī)部銷售額的百分比情況統(tǒng)計(jì)圖.則5月份 機(jī)型的銷售額最高,銷售額最高的機(jī)型占5月份該品牌銷售額的百分比是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
①若a+b+c=0,且abc≠0,則;
②若a+b+c=0,且a≠0,則x=1一定是方程ax+b+c=0的解;
③若a+b+c=0,且abc≠0,則abc>0;
④若|a|>|b|,則>0.
其中正確的結(jié)論是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對稱軸是直線x=﹣1.
(1)求m,n的值;
(2)x取什么值時,y隨x的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如今,網(wǎng)上購物已成為一種新的消費(fèi)時尚,精品書店想購買一種賀年卡在元旦時銷售,在互聯(lián)網(wǎng)上搜索了甲、乙兩家網(wǎng)
店(如圖所示),已知兩家網(wǎng)店的這種賀年卡的質(zhì)量相同,請看圖回答下列問題:
(1)假若精品書店想購買x張賀年卡,那么在甲、乙兩家網(wǎng)店分別需要花多少錢(用含有x的式子表示)?(提示:如需付運(yùn)費(fèi)時運(yùn)費(fèi)只需付一次,即8元)
(2)精品書店打算購買300張賀年卡,選擇哪家網(wǎng)店更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB交弦CD于點(diǎn)G,CG=DG,⊙O的切線BE交DO的延長線于點(diǎn)E,F(xiàn)是DE與⊙O的交點(diǎn),連接BD,BF.
(1)求證:∠CDE=∠E;
(2)若OD=4,EF=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE= 度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)D在直線BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.
(1)求出∠AOB及其補(bǔ)角的度數(shù);
(2)①請求出∠DOC和∠AOE的度數(shù);
②判斷∠DOE與∠AOB是否互補(bǔ),并說明理由.
查看答案和解析>>