【題目】對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱a的根整數(shù),例如:,=3

(1)仿照以上方法計算:=______=_____

(2),寫出滿足題意的x的整數(shù)值______

如果我們對a連續(xù)求根整數(shù),直到結果為1為止.例如:對10連續(xù)求根整數(shù)2 =1,這時候結果為1

(3)100連續(xù)求根整數(shù),____次之后結果為1

(4)只需進行3次連續(xù)求根整數(shù)運算后結果為1的所有正整數(shù)中,最大的是____

【答案】(1)2;6;(2)1,2,3;(3)3;(4)255

【解析】

(1)先估算的大小,再由并新定義可得結果;

(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;

(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結果為1;

(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255256進行幾次操作,即可得出答案.

解:(1)∵22=4, 62=36,72=49,

∴6<<7,

∴[]=[2]=2,[]=6,

故答案為:2,6;

(2)∵12=1,22=4,且[]=1,

∴x=1,2,3,

故答案為:1,2,3;

(3)第一次:[]=10,

第二次:[]=3,

第三次:[]=1,

故答案為:3;

(4)最大的正整數(shù)是255,

理由是:∵[]=15,[]=3,[]=1,

∴對255只需進行3次操作后變?yōu)?/span>1,

∵[]=16,[]=4,[]=2,[]=1,

∴對256只需進行4次操作后變?yōu)?/span>1,

∴只需進行3次操作后變?yōu)?/span>1的所有正整數(shù)中,最大的是255,

故答案為:255.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點,當OA⊥OB時,直線AB恒過一個定點,該定點坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,B=C=90 ,M是BC的中點,DM平分ADC.

(1)若連接AM,則AM是否平分BAD?請你證明你的結論;

(2)線段DM與AM有怎樣的位置關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB邊上的高.動點P從點A出發(fā),沿著△ABC的三條邊逆時針走一圈回到A點,速度為2cm/s,設運動時間為t s.

(1)求CD的長;

(2)t為何值時,△ACP是等腰三角形?

(3)MBC上一動點,NAB上一動點,是否存在M,N使得AM+MN 的值最?如果有,請直接寫出最小值,如果沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC=12厘米, BC=8厘米,點DAB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動;當點Q的運動速度為下列哪個值時,能夠在某一時刻使BPDCQP全等(

A. 23厘米/ B. 4厘米/ C. 3厘米/ D. 46厘米/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.

(1)作出△ABC關于y軸對稱的△ABlCl

(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為______

查看答案和解析>>

同步練習冊答案