【題目】小云在學(xué)習(xí)過程中遇到一個函數(shù).下面是小云對其探究的過程,請補充完整:
(1)當(dāng)時,對于函數(shù),即,當(dāng)時,隨的增大而 ,且;對于函數(shù),當(dāng)時,隨的增大而 ,且;結(jié)合上述分析,進一步探究發(fā)現(xiàn),對于函數(shù),當(dāng)時,隨的增大而 .
(2)當(dāng)時,對于函數(shù),當(dāng)時,與的幾組對應(yīng)值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
綜合上表,進一步探究發(fā)現(xiàn),當(dāng)時,隨的增大而增大.在平面直角坐標(biāo)系中,畫出當(dāng)時的函數(shù)的圖象.
(3)過點(0,m)()作平行于軸的直線,結(jié)合(1)(2)的分析,解決問題:若直線與函數(shù)的圖象有兩個交點,則的最大值是 .
【答案】(1)減小,減小,減小;(2)見解析;(3)
【解析】
(1)根據(jù)一次函數(shù)的性質(zhì),二次函數(shù)的性質(zhì)分別進行判斷,即可得到答案;
(2)根據(jù)表格的數(shù)據(jù),進行描點,連線,即可畫出函數(shù)的圖像;
(3)根據(jù)函數(shù)圖像和性質(zhì),當(dāng)時,函數(shù)有最大值,代入計算即可得到答案.
解:(1)根據(jù)題意,在函數(shù)中,
∵,
∴函數(shù)在中,隨的增大而減小;
∵,
∴對稱軸為:,
∴在中,隨的增大而減;
綜合上述,在中,隨的增大而減小;
故答案為:減小,減小,減。
(2)根據(jù)表格描點,連成平滑的曲線,如圖:
(3)由(2)可知,當(dāng)時,隨的增大而增大,無最大值;
由(1)可知在中,隨的增大而減小;
∴在中,有
當(dāng)時,,
∴m的最大值為;
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,兩點之間線段最短,因此,連接兩點間線段的長度叫做兩點間的距離;同理,連接直線外一點與直線上各點的所有線段中,垂線段最短,因此,直線外一點到這條直線的垂線段的長度,叫做點到直線的距離.類似地,連接曲線外一點與曲線上各點的所有線段中,最短線段的長度,叫做點到曲線的距離.依此定義,如圖,在平面直角坐標(biāo)系中,點到以原點為圓心,以1為半徑的圓的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為獎勵優(yōu)秀學(xué)生,某校準(zhǔn)備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元.
(1)求文具袋和圓規(guī)的單價.
(2)學(xué)校準(zhǔn)備購買文具袋20個,圓規(guī)100個,文具店給出兩種優(yōu)惠方案:
方案一:每購買一個文具袋贈送1個圓規(guī).
方案二:購買10個以上圓規(guī)時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.學(xué)校選擇哪種方案更劃算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,.是邊的中點,點為邊上的一個動點(與點、不重合),過點作,交邊于點.聯(lián)結(jié)、,設(shè).
(1)當(dāng)時,求的面積;
(2)如果點關(guān)于的對稱點為,點恰好落在邊上時,求的值;
(3)以點為圓心,長為半徑的圓與以點為圓心,長為半徑的圓相交,另一個交點恰好落在線段上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某劇場第一排座位分布圖:甲、乙、丙、丁四人購票,所購票分別為2,3,4,5.每人選座購票時,只購買第一排的座位相鄰的票,同時使自己所選的座位之和最。绻础凹住⒁、丙、丁”的先后順序購票,那么甲甲購買1,2號座位的票,乙購買3,5,7號座位的票,丙選座購票后,丁無法購買到第一排座位的票.若丙第一購票,要使其他三人都能購買到第一排座位的票,寫出一種滿足條件的購票的先后順序______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年某中學(xué)舉行的冬季陽徑運動會上,參加男子跳高的15名運動員的成績?nèi)绫硭荆?/span>
成績(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人數(shù) | 1 | 2 | 4 | 3 | 3 | 2 |
這些運動員跳高成績的中位數(shù)和眾數(shù)分別是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)的圖象與反比例函數(shù)的圖象交于.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上存在一點C,使為等腰三角形,求此時點C的坐標(biāo);
(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商業(yè)集團新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設(shè)施維修費、車輛管理人員工資等)為800元.為制定合理的收費標(biāo)準(zhǔn),該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)
(1)當(dāng)x≤5時,寫出y與x之間的關(guān)系式,并說明每輛小車的停車費最少不低于多少元;
(2)當(dāng)x>5時,寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應(yīng)定為多少元?此時日凈收入是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育器材專賣柜經(jīng)銷A、B兩種器材,A種器材每件進價350元,售價480元;B種器材每件進價200元,售價300元.
(1)該專賣柜計劃用8000元去購進A、B兩種器材若干件.
①若購進A種器材x件,B種器材y件,所獲利潤w元,請寫出w與x之間滿足的函數(shù)關(guān)系式;
②怎樣購進才能使專賣柜經(jīng)銷這兩種器材所獲利潤最大(其中A種器材不少于7件)?
(2)在“五·一”期間,該專賣柜對A、B兩種器材進行如下優(yōu)惠促銷活動:
一次性購物總金額 | 優(yōu)惠措施 |
不超過3000元 | 不優(yōu)惠 |
超過3000元不超過4000元 | 售價打八折 |
超過4000元 | 售價打七折 |
促銷活動期間:甲學(xué)校去該專賣柜購買A種器材付款2688元;乙學(xué)校去該專賣柜購買B種器材付款2100元,求丙學(xué)校決定一次性購買甲學(xué)校和乙學(xué)校購買的同樣多的器材需付款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com