【題目】如圖,在ABC中,ABACAHBC,點EAH上一點,延長AH至點F,使FHEH

1)求證:四邊形EBFC是菱形;

2)若∠BAC=∠ECF,求∠ACF的度數(shù).

【答案】1)見解析;(2)∠ACF90°

【解析】

1)根據(jù)題意可證得△BCE為等腰三角形,由AHCB,則BH=HC,從而得出四邊形EBFC是菱形;
2)由(1)得∠2=3,再根據(jù)∠BAC=ECF,得∠4=3,由AHCB,得∠3+1+2=90°,從而得出∠ACF=90°

1)∵AB=AC,AHBC

BH=HC

FH=EH,

∴四邊形EBFC是平行四邊形,

又∵AHBC,

∴四邊形EBFC是菱形;

2)如圖,

∵四邊形EBFC是菱形,

∴∠2=∠3=ECF

AB=AC,AHCB

∴∠4=BAC

∵∠BAC=∠ECF,

∴∠4=∠3

AHCB,

∴∠4+∠1+∠2=90°

∴∠3+∠1+∠2=90°

∴∠ACF=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內部作等邊△ABE和△APQ,連接QE并延長交BP于點F. 試說明:(1)△ABP≌△AEQ;(2)EFBF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內接于點O,點E上的一動點(不與A、B重合),點F上的一點,連接OE、OF,分別與AB、BC交于點G,H,且EOF=90°,有以下結論:

;

②△OGH是等腰三角形;

四邊形OGBH的面積隨著點E位置的變化而變化;

④△GBH周長的最小值為

其中正確的是________(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個圖形中共有_____個點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過點,交y 軸于點C

1)求拋物線的頂點坐標.

2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標;若不存在請說明理由.

3)將直線繞點順時針旋轉,與拋物線交于另一點,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍ABBC兩邊),設AB=xm.

1)若花園的面積為192m2, x的值;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對第二十屆中國哈爾濱冰雪大世界主題景觀的了解情況,在全體學生中隨機抽取了部分學生進行調查,并把調查結果繪制成如圖的不完整的兩幅統(tǒng)計圖:

(1)本次調查共抽取了多少名學生;

(2)通過計算補全條形圖;

(3)若該學校共有名學生,請你估計該學校選擇比較了解項目的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.

1)當售價為萬元/輛時,平均每周的銷售利潤為___________萬元;

2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2 mA處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.

(1)h=2.6時,求yx的關系式(不要求寫出自變量x的取值范圍)

(2)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

同步練習冊答案