【題目】如圖,已知:△ABC在正方形網(wǎng)格中.
(1)請畫出△ABC繞著O逆時針旋轉(zhuǎn)90°后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于點O對稱的△A2B2C2;
(3)在直線MN上求作一點P,使△PAB的周長最小,請畫出△PAB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點P為BC的中點,連接EP,AD.
(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時運動,當(dāng)有一個點先到達所在運動邊的另一個端點時即停止.已知在相同時間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(Ⅰ)當(dāng)x為何值時,AP、ND長度相等?
(Ⅱ)當(dāng)x為何值時,以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個三角形?
(Ⅲ)當(dāng)x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根.
(1)求的取值范圍;
(2)若為正整數(shù),且該方程的兩個根都是整數(shù),求的值并求出方程的兩個整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張直角三角形紙片ABC,∠ACB=90°,AB=10,AC=6,點D為BC邊上的任一點,沿過點D的直線折疊,使直角頂點C落在斜邊AB上的點E處,當(dāng)△BDE是直角三角形時,則CD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場秋季計劃購進一批進價為每件40元的T恤進行銷售.
(1)根據(jù)銷售經(jīng)驗,應(yīng)季銷售時,若每件T恤的售價為60元,可售出400件;若每件T恤的售價每提高1元,銷售量相應(yīng)減少10件.
①假設(shè)每件T恤的售價提高x元,那么銷售每件T恤所獲得的利潤是____________元,銷售量是_____________________件(用含x的代數(shù)式表示);
②設(shè)應(yīng)季銷售利潤為y元,請寫y與x的函數(shù)關(guān)系式;并求出應(yīng)季銷售利潤為8000元時每件T恤的售價.
(2)根據(jù)銷售經(jīng)驗,過季處理時,若每件T恤的售價定為30元虧本銷售,可售出50件;若每件T恤的售價每降低1元,銷售量相應(yīng)增加5條,
①若剩余100件T恤需要處理,經(jīng)過降價處理后還是無法銷售的只能積壓在倉庫,損失本金;若使虧損金額最小,每件T恤的售價應(yīng)是多少元?
②若過季需要處理的T恤共m件,且100≤m≤300,過季虧損金額最小是__________________________元(用含m的代數(shù)式表示).(注:拋物線頂點是)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com