【題目】如圖,EFAD,ADBC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,則∠FEC=_____.

【答案】20.

【解析】

EFAD平行,ADBC平行,利用平行于同一條直線的兩直線平行得到EFBC平行,利用兩直線平行同旁內(nèi)角互補求出∠ACB度數(shù),進(jìn)而求出∠FCB度數(shù),根據(jù)CE為角平分線求出∠BCE度數(shù),再利用兩直線平行內(nèi)錯角相等即可求出所求角度數(shù).

EFAD,ADBC

EFBC,

∴∠ACB+DAC=180°,

∵∠DAC=115°,

∴∠ACB=65°,

又∵∠ACF=25°,

∴∠FCB=ACB-ACF=40°,

CE平分∠BCF

∴∠BCE=20°,

EFBC

∴∠FEC=ECB,

∴∠FEC=20°,

故答案為20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于xy的二元一次方程組x-y=3a①和x+3y=4-a.

1)如果是方程①的解,求a的值;

2)當(dāng)a=1時,求兩個方程的公共解;

3)若方程組的解滿足x≤0,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(PG不與正方形頂點重合,且在CD的同側(cè)),PD=PGDFPG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF

1)如圖1,當(dāng)點P與點G分別在線段BC與線段AD上時.

①求證:DG=2PC;

②求證:四邊形PEFD是菱形;

2)如圖2,當(dāng)點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點、、不在同一條直線上,.

1)如圖1,當(dāng),時,求的度數(shù);

2)如圖2,分別為、的平分線所在直線,試探究的數(shù)量關(guān)系;

3)如圖3,在(2)的前提下,有,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次根式的化簡中,若被開方數(shù)還有根號,有的能將被開方數(shù)化成另一個二次根式的平方的形式,比如:,聰明的你可以繼續(xù)探究,當(dāng)a,bm,n為正整數(shù)時,若,則有,所以.模仿上述探究解決下列問題:

1)當(dāng)ab,mn為正整數(shù)時,,請用含m,n的代數(shù)式分別表示a,ba= b=

2)填空:= + 2

3)若,且am,n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等腰△ABC中,其中AB=AC∠A=40°,P△ABC內(nèi)一點,且∠1=∠2,則∠BPC等于( )

A. 110° B. 120° C. 130° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為紀(jì)念建國70周年,我市某中學(xué)團委擬組織學(xué)生開展唱紅歌比賽活動,為此,該校隨機抽取部分學(xué)生就“你是否喜歡紅歌”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

態(tài)度

非常喜歡

喜歡

一般

不知道

頻數(shù)

90

b

30

10

頻率

a

請你根據(jù)統(tǒng)計圖、表提供的信息解答下列問題:

該校這次隨機抽取了______名學(xué)生參加問卷調(diào)查;

確定統(tǒng)計表中的值:______,______;

在統(tǒng)計圖中“喜歡”部分扇形所對應(yīng)的圓心角是______度;

若該校共有2000名學(xué)生,估計全校態(tài)度為“非常喜歡”的學(xué)生有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點 A﹣2,0),B2,0),C0,2,點 D,點E分別是 AC,BC的中點,將CDE繞點C逆時針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當(dāng) AD′∥CE時,求α的大。

2如圖,若 90°α180°,當(dāng)點 D落在線段 BE上時,求 sin∠CBE的值;

3若直線AD與直線BE相交于點P,求點P的橫坐標(biāo)m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年汶川車?yán)遄酉搏@豐收,車?yán)遄右簧鲜,水果店的王老板?/span>2500元購進(jìn)一批車?yán)遄樱芸焓弁;老板又?/span>4400元購進(jìn)第二批車?yán)遄樱彅?shù)量是第一批的2倍,由于進(jìn)貨量增加,進(jìn)價比第一批每干克少了3元.

l)第一批車?yán)遄用壳Э诉M(jìn)價多少元?.

2)該老板在銷售第二批車?yán)遄訒r,售價在第二批進(jìn)價的基礎(chǔ)上增加了,售出后,為了盡快售完,決定將剩余車?yán)遄釉诘诙M(jìn)價的基礎(chǔ)上每千克降價元進(jìn)行促銷,結(jié)果第二批車?yán)遄拥匿N售利潤為1520元,求的值。(利潤=售價一進(jìn)價)

查看答案和解析>>

同步練習(xí)冊答案