精英家教網 > 初中數學 > 題目詳情
(2009•益陽)一個物體由多個完全相同的小正方體組成,它的三視圖如圖所示,那么組成這個物體的小正方體的個數為( )

A.2
B.3
C.4
D.5
【答案】分析:可以根據畫三視圖的方法,發(fā)揮空間想象能力,分別得到每一行小正方體的個數,相加即可.
解答:解:綜合三視圖,第一行第1列有1個,第一行第2列有2個,第一行第3列有1個,一共有1+2+1=4個.故選C.
點評:本題考查了幾何體的三視圖及空間想象能力.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷26(義蓬一中 王芳)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年四川省宜賓市橫江片區(qū)春季期半期檢測數學試卷(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省梅州市中考數學模擬試卷(一)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省廣州市南沙區(qū)中考數學一模試卷(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案