【題目】如圖是甲、乙兩名射擊運(yùn)動(dòng)員的10次射擊測(cè)試成績(jī)的折線統(tǒng)計(jì)圖.

(1)根據(jù)折線圖把下列表格補(bǔ)充完整;

運(yùn)動(dòng)員

平均數(shù)

中位數(shù)

眾數(shù)

8.5

9

8.5

(2)根據(jù)上述圖表運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)對(duì)甲、乙兩名運(yùn)動(dòng)員的射擊水平進(jìn)行評(píng)價(jià)并說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】分析: (1)把數(shù)據(jù)從小到大排列,根據(jù)中位數(shù)和眾數(shù)的概念求解即可.

(2)答案不唯一,言之有理即可.

1)補(bǔ)充表格:

運(yùn)動(dòng)員

平均數(shù)

中位數(shù)

眾數(shù)

8.5

9

9

8.5

8.5

710

(2)答案不唯一,可參考的答案如下:

甲選手:和乙選手的平均成績(jī)相同,中位數(shù)高于乙,打出9環(huán)及以上的次數(shù)更多,打出7環(huán)的次數(shù)較少,說(shuō)明甲選手相比之下發(fā)揮更加穩(wěn)定;

乙選手:與甲選手平均成績(jī)相同,打出10環(huán)次數(shù)和7環(huán)次數(shù)都比甲多,說(shuō)明乙射擊時(shí)起伏更大,但也更容易打出10環(huán)的成績(jī).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),正方形與長(zhǎng)方形的位置如圖所示,點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上,點(diǎn)的橫坐標(biāo)為,點(diǎn),軸的負(fù)半軸上(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)的坐標(biāo)為,,實(shí)數(shù),的值滿足.

1)求點(diǎn)的坐標(biāo);

2)長(zhǎng)方形以每秒1個(gè)單位長(zhǎng)度的速度向右平移)秒得到矩形,點(diǎn),,,分別為點(diǎn),,平移后的對(duì)應(yīng)點(diǎn),設(shè)矩形與正方形重合部分的面積為,用含的式子表示,并直接寫(xiě)出相應(yīng)的的范圍;

3)在(2)的條件下,在長(zhǎng)方形出發(fā)運(yùn)動(dòng)的同時(shí),點(diǎn)從點(diǎn)出發(fā),沿正方形的邊以每秒2個(gè)單位長(zhǎng)度的速度順時(shí)針?lè)较蜻\(yùn)動(dòng)(即),連接,,當(dāng)三角形的面積為15時(shí),求時(shí)相應(yīng)的值,并直接寫(xiě)出此時(shí)刻值及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過(guò)程.

已知:線段

求作:以為斜邊的一個(gè)等腰直角三角形

作法:如圖,

(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于,兩點(diǎn);

(2)作直線,交于點(diǎn);

(3)以為圓心,的長(zhǎng)為半徑作圓,交直線于點(diǎn);

(4)連接

即為所求作的三角形.

請(qǐng)回答:在上面的作圖過(guò)程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(方法回顧)證明:三角形中位線定理.

已知:如圖1,中,D、E分別是AB、AC的中點(diǎn).

求證:

證明:如圖1,延長(zhǎng)DE到點(diǎn)F,使得,連接CF;

請(qǐng)繼續(xù)完成證明過(guò)程;

2)(問(wèn)題解決)

如圖2,在矩形ABCD中,EAD的中點(diǎn),G、F分別為ABCD邊上的點(diǎn),若,,求GF的長(zhǎng).

3)(思維拓展)

如圖3,在梯形ABCD中,,,EAD的中點(diǎn),G、F分別為ABCD邊上的點(diǎn),若,,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的軌道上有兩個(gè)點(diǎn)甲與乙,開(kāi)始時(shí)甲在A處,乙在C處,它們沿著正方形軌道順時(shí)針同時(shí)出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長(zhǎng)為2 cm,則乙在第2 020次追上甲時(shí)的位置在(  )

A.ABB.BC

C.CDD.AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊, 分別是邊上的點(diǎn),且 , ,點(diǎn)與點(diǎn)關(guān)于對(duì)稱(chēng),連接,.

(1)連接,則之間的數(shù)量關(guān)系是 ;

(2)若,求的大小(用的式子表示)

(2)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車(chē)在行駛過(guò)程中速度與時(shí)間的函數(shù)關(guān)系,下列說(shuō)法中錯(cuò)誤的是( )

A. 3分時(shí)汽車(chē)的速度是40千米/時(shí)

B. 12分時(shí)汽車(chē)的速度是0千米/時(shí)

C. 從第3分到第6分,汽車(chē)行駛了120千米

D. 從第9分到第12分,汽車(chē)的速度從60千米/時(shí)減少到0千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A沿邊AB向點(diǎn)B1cm/s的速度移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC向點(diǎn)C2cm/s的速度移動(dòng).

1)問(wèn)幾秒后△PBQ的面積等于8cm2?

2)是否存在這樣的時(shí)刻,使=8cm2,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案