【題目】已知:在ABC年,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).AD為邊作正方形ADEF,連接CF.

1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BDCF. .

2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其它條件不變,請(qǐng)直接寫出CFBC、CD三條線段之間的關(guān)系;

3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:

①請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系,

②若連接正方形對(duì)角線AE,DF,交點(diǎn)為0,連接OC,探究AOC的形狀,并說明理由.

【答案】1)①見解析;②見解析;(2)見解析(3)①見解析;②見解析.

【解析】

1)①根據(jù)等腰直角三角形的性質(zhì)可得∠ABC=ACB=45°,再根據(jù)正方形的性質(zhì)可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=CAF,然后利用邊角邊證明BADCAF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ACF=ABD,再求出∠ACF+ACB=90°,從而得證;②根據(jù)全等三角形對(duì)應(yīng)邊相等可得BD=CF,從而求出CF=BC-CD;
2)與(1)同理可得BD=CF,然后結(jié)合圖形可得CF=BC+CD
3)①與(1)同理可得BD=CF,然后結(jié)合圖形可得CF=CD-BC;②根據(jù)等腰直角三角形的性質(zhì)求出∠ABC=ACB=45°,再根據(jù)鄰補(bǔ)角的定義求出∠ABD=135°,再根據(jù)同角的余角相等求出∠BAD=CAF,然后利用邊角邊證明BADCAF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ACF=ABD,再求出∠FCD=90°,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出OC=DF,再根據(jù)正方形的對(duì)角線相等求出OC=OA,從而得到△AOC是等腰三角形.

1)證明:①∵∠BAC=90°AB=AC,
∴∠ABC=ACB=45°,
∵四邊形ADEF是正方形,
AD=AF,∠DAF=90°
∵∠BAC=BAD+DAC=90°,
DAF=CAF+DAC=90°,
∴∠BAD=CAF,

在△BAD和△CAF中,

∴△BAD≌△CAFSAS),
∴∠ACF=ABD=45°,
∴∠ACF+ACB=90°
BDCF;
②由①△BAD≌△CAF可得BD=CF,
BD=BC-CD
CF=BC-CD;
2)與(1)同理可得BD=CF,
所以,CF=BC+CD;
3)①與(1)同理可得,BD=CF,
所以,CF=CD-BC;
②∵∠BAC=90°,AB=AC,
∴∠ABC=ACB=45°
則∠ABD=180°-45°=135°,
∵四邊形ADEF是正方形,
AD=AF,∠DAF=90°,
∵∠BAC=BAF+CAF=90°,
DAF=BAD+BAF=90°,
∴∠BAD=CAF

在△BAD和△CAF中,

∴△BAD≌△CAFSAS),
∴∠ACF=ABD=180°-45°=135°,
∴∠FCD=ACF-ACB=90°
則△FCD為直角三角形,
∵正方形ADEF中,ODF中點(diǎn),
OC=DF,
∵在正方形ADEF中,OA=AE,AE=DF,
OC=OA
∴△AOC是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)DBC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次演講比賽中,評(píng)委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項(xiàng)成績(jī)均按百分制,進(jìn)入決賽的兩名選手的單項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>

選手

演講內(nèi)容

演講能力

演講效果

85

95

95

95

85

95

(1)如果認(rèn)為這三方面的成績(jī)同等重要,從他們的成績(jī)看,誰能勝出?

(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計(jì)算甲、乙的平均成績(jī),那么誰將勝出?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD是∠BAC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AEBE.

1)求證:四邊形AEBD是矩形;

2)當(dāng)∠BAC= 時(shí),矩形AEBD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一副三角板的直角頂點(diǎn)O重疊在一起.

(1)問題發(fā)現(xiàn):如圖①,當(dāng)OB平分COD時(shí),AOD+BOC的度數(shù)是 ;

(2)拓展探究:如圖②,當(dāng)OB不平分COD時(shí),AOD+BOC的度數(shù)是多少?

(3)問題解決:當(dāng)BOC的余角的4倍等于AOD時(shí),求BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小華同學(xué)一個(gè)學(xué)期數(shù)學(xué)成績(jī)的記錄.根據(jù)表格提供的信息,回答下列的問題:

考試類別

平時(shí)考試

期中考試

期末考試

第一單元

第二單元

第三單元

第四單元

成績(jī)(分)

85

78

90

91

90

94

(1)小明6次成績(jī)的眾數(shù)是   ,中位數(shù)是   ;

(2)求該同學(xué)這個(gè)同學(xué)這一學(xué)期平時(shí)成績(jī)的平均數(shù);

(3)總評(píng)成績(jī)權(quán)重規(guī)定如下:平時(shí)成績(jī)占20%,期中成績(jī)占30%,期末成績(jī)占50%,請(qǐng)計(jì)算出小華同學(xué)這一個(gè)學(xué)期的總評(píng)成績(jī)是多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為-20,點(diǎn)B對(duì)應(yīng)的數(shù)為120.

(1)請(qǐng)寫出線段AB的中點(diǎn)C對(duì)應(yīng)的數(shù).

(2)點(diǎn)P從點(diǎn)B出發(fā),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)P、Q重合時(shí)對(duì)應(yīng)的數(shù)是多少?

(3)(2)的條件下,P、Q兩點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間相距50個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P每次沿著與x軸成45°的方向運(yùn)動(dòng),第一次從原點(diǎn)O向右上方運(yùn)動(dòng)1個(gè)單位長(zhǎng)度到P1),第二次從點(diǎn)P1向右下方運(yùn)動(dòng)1個(gè)單位長(zhǎng)度到P20),第三次從點(diǎn)p2向右下方運(yùn)動(dòng)2個(gè)單位長(zhǎng)度到P32-),第四次從點(diǎn)P3向右上方動(dòng)2個(gè)單位長(zhǎng)度到P43,0),第五次從點(diǎn)P4向右上方運(yùn)動(dòng)3個(gè)單位長(zhǎng)度到P5,),第六次從點(diǎn)P5向右下方運(yùn)動(dòng)3個(gè)單位長(zhǎng)度到P66,0……依此規(guī)律下去,則P43的坐標(biāo)為(  )

A. 242-11B. 242,11

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtΔABC,C=90°,D為BC的中點(diǎn).以AC為直徑的圓O交AB于點(diǎn)E.

(1)求證:DE是圓O的切線.

(2)若AE:EB=1:2,BC=6,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案