如圖,菱形ABCD的邊長為2,∠A=,動點P從點B出發(fā),沿B-C-D的路線向點D運動。設△ABP的面積為y (B、P兩點重合時,△ABP的面積可以看做0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為【 】
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
根據(jù)要求,解答下列問題:
(1)已知直線l1的函數(shù)表達式為,直接寫出:①過原點且與l1垂直的直線l2的函數(shù)表達式;②過點(1,0)且與l1垂直的直線l2的函數(shù)表達式;
(2)如圖,過點(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達式;②把直線l4繞點(1,0)按逆時針方向旋轉900得到的直線l5,求直線l5的函數(shù)表達式;
(3)分別觀察(1)(2)中的兩個函數(shù)表達式,請猜想:當兩直線垂直時,它們的函數(shù)表達式中自變量的系數(shù)之間有何關系?請根據(jù)猜想結論直接寫出過點(1,1)且與直線垂直的直線l6的函數(shù)表達式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
為了考察冰川融化的狀況,一支科考隊在某冰川上設定一個以大本營O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動.若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關系是.以O為原點,建立如圖所示的平面直角坐標系,其中P1、P2的坐標分別是(-4,9)、(-13,-3).
(1)求線段P1P2所在的直線對應的函數(shù)關系式;
(2)求冰川的邊界線移動到考察區(qū)域所需要的最短時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,平面之間坐標系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A ,k= ;
(2)隨著三角板的滑動,當a=1時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當三角板滑至點E為AB的中點時,求t的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為點C、D,連結CD、QC.
(1)當t為何值時,點Q與點D重合?
(2)當t為何值時,DQ=2AD?
(3)求線段QC所在直線與⊙P相切時t的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,正方形ABCD的邊長是4,點P是邊CD上一點,連接PA,將線段PA繞點P逆時針旋轉90°得到線段PE,在邊AD延長線上取點F,使DF=DP,連接EF,CF路。
(1)求證:四邊形PCFE是平行四邊形;
(2)當點P在邊CD上運動時,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時CP長;若沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,等腰直角梯形ABCD中,∠ADC=∠BCD=90°,BC=CD=4,P為邊AD上的一個動點,AE⊥BP,CF⊥BP,垂足分別為點E、F。證明:DE2+BF2=16。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com