【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,﹣2),點(diǎn)B(3m,2m+1),點(diǎn)C(6,2),點(diǎn)D.

(1)線段AC的中點(diǎn)E的坐標(biāo)為_____;

(2)ABCD的對(duì)角線BD長的最小值為_____

【答案】(3,0)

【解析】

(1)根據(jù)點(diǎn)A、點(diǎn)C的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式進(jìn)行求解即可得;

(2)如圖,根據(jù)點(diǎn)B的坐標(biāo)確定出B在直線y=x+1上,根據(jù)垂線段最短可得當(dāng)BD⊥直線y=x+1時(shí),BD最小,由此根據(jù)已知條件添加輔助線進(jìn)行求解即可得.

(1)∵點(diǎn)A(0,﹣2),點(diǎn)C(6,2),

∴線段AC的中點(diǎn)E的坐標(biāo)為(3,0),

故答案為:(3,0).

(2)如圖,∵點(diǎn)B(3m,2m+1),

∴令,

y=x+1,

B在直線y=x+1上,

∴當(dāng)BD⊥直線y=x+1時(shí),BD最小,

BBHx軸于H,則BH=2m+1,

BE在直線y=x+1上,且點(diǎn)Ex軸上,

E(﹣,0),G(0,1),

∵平行四邊形對(duì)角線交于一點(diǎn),且AC的中點(diǎn)一定在x軸上,

FAC的中點(diǎn),

A(0,﹣2),點(diǎn)C(6,2),

F(3,0),

RtBEF中,BHEF,

BEHFBH,

BH:FH=EH:BH,BH2=EHFH,

(2m+1)2=(3m+)(3﹣3m),

解得:m=或﹣(舍棄),

B(,),

BF=

BD=2BF=,

則對(duì)角線BD的最小值是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)B、C的坐標(biāo)分別為(﹣20),(﹣1,2).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中根據(jù)上述點(diǎn)的坐標(biāo)建立對(duì)應(yīng)的直角坐標(biāo)系;(只要畫圖,不需要說明)

2)在(1)中建立的平面直角坐標(biāo)系中,先畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于x軸對(duì)稱的圖形△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時(shí)點(diǎn)A′的橫坐標(biāo)為3,則點(diǎn)B′的坐標(biāo)為(  )

A. (2,4) B. (2,3) C. (3,4) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完第十二章后,張老師讓同學(xué)們獨(dú)立完成課本56頁第9題:“如圖1,,,,垂足分別為,,求的長.

1)請(qǐng)你也獨(dú)立完成這道題:

2)待同學(xué)們完成這道題后,張老師又出示了一道題:

在課本原題其它條件不變的前提下,將所在直線旋轉(zhuǎn)到的外部(如圖2),請(qǐng)你猜想,三者之間的數(shù)量關(guān)系,直接寫出結(jié)論:_______.(不需證明)

3)如圖3,將(1)中的條件改為:在中,,,三點(diǎn)在同一條直線上,并且有∠BEC=∠ADC=∠BCA=,其中為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DAC上一點(diǎn),EBD上一點(diǎn),∠A=CBD=DCE.

(1)求證:△ABC∽△CDE;

(2)若BD=3DE,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道“兩邊和一角分別相等的兩個(gè)三角形不一定全等”,如圖(1),,,,但卻不全等.但是如果兩個(gè)直角三角形呢?如圖(2),,,則嗎?

(1)根據(jù)圖(2)完成以下證明和閱讀:

中,

,____________(勾股定理)

____________

,.____________

中,,

____________(____________)

歸納:斜邊和一條直角邊相等的兩個(gè)直角三角形全等;簡稱為“斜邊直角邊”或“”.

幾何語言如下:

中,

,

(2)如圖(3)已知,;求證:平分.(每一步都要填寫理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D為邊BC的中點(diǎn),過點(diǎn)A作射線AE,過點(diǎn)CCFAE于點(diǎn)F,過點(diǎn)BBGAE于點(diǎn)G,連接FD并延長,交BG于點(diǎn)H.

(1)求證:DF=DH;

(2)若∠CFD=120°,求證:DHG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABCADE均為等邊三角形,連接BE,CD,點(diǎn)FG,H分別為DE,BE,CD中點(diǎn).

(1)當(dāng)ADE繞點(diǎn)A旋轉(zhuǎn)時(shí),如圖1,則FGH的形狀為 ,說明理由;

(2)在ADE旋轉(zhuǎn)的過程中,當(dāng)BD,E三點(diǎn)共線時(shí),如圖2,若AB=3,AD=2,求線段FH的長;

(3)在ADE旋轉(zhuǎn)的過程中,若AB=aAD=bab>0),則FGH的周長是否存在最大值和最小值,若存在,直接寫出最大值和最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案