【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點(diǎn)P從A出發(fā),以每秒2厘米的速度向B運(yùn)動,點(diǎn)Q從C同時出發(fā),以每秒3厘米的速度向A運(yùn)動,其中一個動點(diǎn)到端點(diǎn)時,另一個動點(diǎn)也相應(yīng)停止運(yùn)動,那么,當(dāng)以A、P、Q為頂點(diǎn)的三角形與△ABC相似時,運(yùn)動時間是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購進(jìn)35臺這兩種型號的電腦,設(shè)購進(jìn)A型電腦x臺.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若購進(jìn)B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是_____.(請直接填寫序號)
①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y= 的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸軸分別交于點(diǎn)、點(diǎn),函數(shù),與的圖像交于第二象限的點(diǎn),且點(diǎn)橫坐標(biāo)為.
(1)求的值;
(2)當(dāng)時,直接寫出的取值范圍;
(3)在直線上有一動點(diǎn),過點(diǎn)作軸的平行線交直線于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=x+|x﹣2|的圖象與性質(zhì)
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=x+|x﹣2|的圖象與性質(zhì)進(jìn)行了探究
下面是小明的探究過程,請補(bǔ)充完成:
(1)化簡函數(shù)解析式,當(dāng)x≥2時,y= ;當(dāng)x<2時,y= ;
(2)根據(jù)(1)中的結(jié)果,請?jiān)趫D1的坐標(biāo)系中畫出函數(shù)y=x+|x﹣2|的圖象;
(3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)結(jié)合畫出的函數(shù)圖象,利用圖2解決問題,若關(guān)于x的方程ax+1=x+|x﹣2|有兩個實(shí)數(shù)根,直接寫出實(shí)數(shù)a的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“圓材埋壁”是我國著名的數(shù)學(xué)著作《九章算術(shù)》中的一個問題,“今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?” 用現(xiàn)代的數(shù)學(xué)語言表達(dá)是:“如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長”. 依題意,CD長為( )
A. 寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com