【題目】如圖1,正方形ABCD的邊長為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動(dòng)點(diǎn)(不與M、C重合),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線,交AD于點(diǎn)F,切點(diǎn)為E.
(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點(diǎn)G,連接OE并延長交直線DC于H(圖2),問是否存在點(diǎn)P,使△EFO∽△EHG(E、F、O與E、H、G為對(duì)應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請(qǐng)說明理由.
【答案】
(1)
證明:連接OE
FE、FA是⊙O的兩條切線
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,
∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF= ∠AOE,
∴∠AOF=∠ABE,
∴OF∥BE
(2)
解:過F作FQ⊥BC于Q
∴PQ=BP﹣BQ=x﹣y
PF=EF+EP=FA+BP=x+y
∵在Rt△PFQ中
∴FQ2+QP2=PF2
∴22+(x﹣y)2=(x+y)2
化簡得: ,(1<x<2)
(3)
解:存在這樣的P點(diǎn),
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
當(dāng)∠EFO=∠EHG=2∠EOF時(shí),
即∠EOF=30°時(shí),Rt△EFO∽R(shí)t△EHG,
此時(shí)Rt△AFO中,
y=AF=OAtan30°= ,
∴
∴當(dāng) 時(shí),△EFO∽△EHG
【解析】(1)首先證明Rt△FAO≌Rt△FEO進(jìn)而得出∠AOF=∠ABE,即可得出答案;(2)過F作FQ⊥BC于Q,利用勾股定理求出y與x之間的函數(shù)關(guān)系,根據(jù)M是BC中點(diǎn)以及BC=2,即可得出BP的取值范圍;(3)首先得出當(dāng)∠EFO=∠EHG=2∠EOF時(shí),即∠EOF=30°時(shí),Rt△EFO∽R(shí)t△EHG,求出y=AF=OAtan30°= ,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BF與AD相交于E.若AD=BD,BE=AC,BC=8cm,DC=3cm,則AE=_____,∠BFC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時(shí)由A、C兩點(diǎn)出發(fā),分別沿AB、CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育館計(jì)劃從一家體育用品商店一次性購買若干個(gè)氣排球和籃球(每個(gè)氣排球的價(jià)格都相同,每個(gè)籃球的價(jià)格都相同).經(jīng)洽談,購買1個(gè)氣排球和2個(gè)籃球共需210元;購買2個(gè)氣排球和3個(gè)籃球共需340元.
(1)每個(gè)氣排球和每個(gè)籃球的價(jià)格各是多少元?
(2)該體育館決定從這家體育用品商店一次性購買氣排球和籃球共50個(gè),總費(fèi)用不超過3200元,且購買氣排球的個(gè)數(shù)少于30個(gè),應(yīng)選擇哪種購買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,點(diǎn)D是斜邊AB的中點(diǎn),DE∥BC,且CE=CD.
(1)求證:∠B=∠DEC;
(2)求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列判斷:①∠A與∠1是同位角;②∠A與∠B是同旁內(nèi)角;③∠4與∠1是內(nèi)錯(cuò)角;④∠1與∠3是同位角. 其中正確的是 (填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組:.
請(qǐng)結(jié)合題意,完成本題的解答.
(1)解不等式①,得 ,依據(jù)是: .
(2)解不等式③,得 .
(3)把不等式①,②和③的解集在數(shù)軸上表示出來.
(4)從圖中可以找出三個(gè)不等式解集的公共部分,得不等式組的解集 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條不完整的數(shù)軸上,從左向右有兩個(gè)點(diǎn)A、B,其中A點(diǎn)表示的數(shù)為m,B表示數(shù)的為4,點(diǎn)C也為數(shù)軸上一點(diǎn),且AB=2AC,
(1)若m為整數(shù),求m的最大值;
(2)若C表示的數(shù)為﹣2,求m的值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com