【題目】如圖,在△ABC中,AD⊥BCD,BFAD相交于E.若AD=BD,BE=AC,BC=8cm,DC=3cm,則AE=_____,∠BFC=_____

【答案】2cm 90°

【解析】

由題意可得BD=AD=5cm,根據(jù)已知可證明BDEADC(HL),可得DE=CD=3cm,根據(jù)AE=AD-DE求出AE長即可,根據(jù)∠DAC+C=90°,DAC=DBE可得∠DBE+C=90°,即可求出∠BFC=90°.

BC=8cm,DC=3cm,

BD=AD=5cm,

RtBDERtADC中,

BE=AC,BD=AD,

BDEADC(HL),

DE=CD=3cm,DAC=DBE,

AE=AD-DE=5-3=2cm,

∵∠DAC+C=90°,DAC=DBE,

∴∠DBE+C=90°,

∴∠BFC=90°

故答案為:(1).2cm;(2). 90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵節(jié)約能源,某電力公司特別出臺了新的用電收費(fèi)標(biāo)準(zhǔn):當(dāng)每戶每月用電量不超過210度時,收費(fèi)標(biāo)準(zhǔn)是每度0.5元;當(dāng)每戶每月用電量超過210度時,超出部分的收費(fèi)標(biāo)準(zhǔn)是每度0.8元.

(1)小林家在4月份用電度,請你用來表示小林家在4月份應(yīng)付的電費(fèi):_________;

(2)小林家在12月份交付電費(fèi)181元,請你利用方程的知識,求小林家在12月份的用電量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線CD上有一點(diǎn)O,過點(diǎn)O在直線CD上方作射線OP.將一直角三角尺AOB(∠AOB=90°)的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線OD上,另一邊OB在直線CD上方.將直角三角板繞著點(diǎn)O逆時針旋轉(zhuǎn).

(1)當(dāng)直角三角板旋轉(zhuǎn)到如圖②的位置,OB恰好平分∠COP時,試證明:OA邊恰好平分∠POD.

(2)若射線OP的位置保持不變,且∠COP=50°.當(dāng)直角三角尺旋轉(zhuǎn)到邊AB與射線OC相交時則∠BOC與∠AOP有怎樣的數(shù)量關(guān)系?試畫出圖形,寫出數(shù)量關(guān)系,并寫出說理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個粒子在第一象限內(nèi)及x軸、y軸上運(yùn)動,在第一分鐘,它從原點(diǎn)運(yùn)動到點(diǎn)(1,0),第二分鐘,它從點(diǎn)(1,0)運(yùn)動到點(diǎn)(1,1),而后它接著按圖中箭頭所示在與x軸,y軸平行的方向上來回運(yùn)動,且每分鐘移動1個單位長度,那么在第2019分鐘時,這個粒子所在位置的坐標(biāo)是( )

A. (44,5) B. (5,44) C. (44,6) D. (6,44)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4,CD⊥ABDP是線段CD上一個動點(diǎn),以P為直角頂點(diǎn)向下作等腰Rt△BPE,連結(jié)AE,DE.

(1)∠BAE的度數(shù)是否為定值?若是,求出∠BAE的度數(shù);

(2)直接寫出DE的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn),現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH,若HG延長線恰好經(jīng)過點(diǎn)D,則CD的長為(
A.2cm
B.2 cm
C.4cm
D.4 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.

如:

因此,4,12,20這三個數(shù)都是神秘數(shù).

(1)282012這兩個數(shù)是不是神秘數(shù)?為什么?

(2)設(shè)兩個連續(xù)偶數(shù)為(其中為非負(fù)整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.

(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個動點(diǎn)(不與M、C重合),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線,交AD于點(diǎn)F,切點(diǎn)為E.

(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點(diǎn)G,連接OE并延長交直線DC于H(圖2),問是否存在點(diǎn)P,使△EFO∽△EHG(E、F、O與E、H、G為對應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用四根長度相同的木條制作了能夠活動的菱形學(xué)具,他先活動學(xué)具成為圖1所示菱形,并測得∠B=60°,接著活動學(xué)具成為圖2所示正方形,并測得對角線AC=40cm,則圖1中對角線AC的長為

A. 20 cm B. 30 cm C. 0 cm D. cm

查看答案和解析>>

同步練習(xí)冊答案