精英家教網 > 初中數學 > 題目詳情
(2004•哈爾濱)小明同學騎自行車去郊外春游,下圖表示他離家的距離y(千米)與所用的時間x(小時)之間關系的函數圖象.
(1)根據圖象回答:小明到達離家最遠的地方需幾小時?此時離家多遠?
(2)求小明出發(fā)兩個半小時離家多遠?
(3)求小明出發(fā)多長時間距家12千米?
【答案】分析:(1)根據分段函數的圖象上點的坐標的意義可知:小明到達離家最遠的地方需3小時;此時,他離家30千米;
(2)因為C(2,15)、D(3,30)在直線上,運用待定系數法求出解析式后,把x=2.5代入解析式即可;
(3)分別利用待定系數法求得過E、F兩點的直線解析式,以及A、B兩點的直線解析式.分別令y=12,求解x.
解答:解:(1)由圖象可知小明到達離家最遠的地方需3小時;此時,他離家30千米;

(2)設直線CD的解析式為y=k1x+b1,由C(2,15)、D(3,30),
代入得:y=15x-15,(2≤x≤3)
當x=2.5時,y=22.5(千米)答:出發(fā)兩個半小時,小明離家22.5千米;

(3)設過E、F兩點的直線解析式為y=k2x+b2,
由E(4,30)、F(6,0),代入得y=-15x+90,(4≤x≤6)
過A、B兩點的直線解析式為y=k3x,∵B(1,15)∴y=15x(0≤x≤1)
分別令y=12,得x=(小時),x=(小時)
答:小明出發(fā)小時或小時距家12千米.
點評:主要考查利用一次函數的模型解決實際問題的能力和讀圖能力.要先根據題意列出函數關系式,再代數求值.解題的關鍵是要分析題意根據實際意義準確的列出解析式,再把對應值代入求解,并會根據圖示得出所需要的信息.
練習冊系列答案
相關習題

科目:初中數學 來源:2004年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2004•哈爾濱)已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,拋物線與y軸交于點C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點A的左側,求一點E,使△ECO與△CAO相似,并說明直線EC經過(1)中拋物線的頂點D;
(3)過(2)中的點E的直線y=x+b與(1)中的拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為M′、N′,點P為線段MN上一點,點P的橫坐標為t,過點P作平行于y軸的直線交(1)中所求拋物線于點Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2004年黑龍江省哈爾濱市中考數學試卷(解析版) 題型:解答題

(2004•哈爾濱)已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,拋物線與y軸交于點C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點A的左側,求一點E,使△ECO與△CAO相似,并說明直線EC經過(1)中拋物線的頂點D;
(3)過(2)中的點E的直線y=x+b與(1)中的拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為M′、N′,點P為線段MN上一點,點P的橫坐標為t,過點P作平行于y軸的直線交(1)中所求拋物線于點Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2004年黑龍江省哈爾濱市中考數學試卷(解析版) 題型:解答題

(2004•哈爾濱)小明同學騎自行車去郊外春游,下圖表示他離家的距離y(千米)與所用的時間x(小時)之間關系的函數圖象.
(1)根據圖象回答:小明到達離家最遠的地方需幾小時?此時離家多遠?
(2)求小明出發(fā)兩個半小時離家多遠?
(3)求小明出發(fā)多長時間距家12千米?

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《數據分析》(03)(解析版) 題型:解答題

(2004•哈爾濱)中學生與小學生的視力狀況受到全社會的廣泛關注,某市部門對全市4萬名初中生的視力狀況進行一次抽樣調查統計,所得到的有關數據繪制成頻數分布直方圖,如圖,從左到右五個小組的頻率之比依次是2:4:9:7:3,第五小組頻數是30.
(1)樣本容量是多少?
(2)中位數應在哪一組?
(3)如果視力在4.9~5.1均屬于正常,那么全市初中生視力正常約有多少人?

查看答案和解析>>

同步練習冊答案