(2005•桂林)已知:如圖,∠CAB=∠DBA,AC=BD.
求證:(1)AD=BC;
(2)S△AOC=S△BOD

【答案】分析:先根據(jù)SAS判定△CAB≌△DBA,根據(jù)全等三角形的對應(yīng)邊相等可得到AD=BC;
先根據(jù)AAS判定△CAO≌△DBO,全等三角形的面積相等,從而得出了結(jié)論S△AOC=S△BOD
解答:證明:(1)∵∠CAB=∠DBA,AC=BD,AB=AB,
∴△CAB≌△DBA.
∴AD=BC.

(2)∵△CAB≌△DBA,
∴∠C=∠D.
∵AC=BD,∠COA=∠DOB,
∴△CAO≌△DBO.
∴S△AOC=S△BOD
點(diǎn)評:此題考查了學(xué)生對全等三角形的判定及性質(zhì)的理解及運(yùn)用,并且利用了全等三角形的面積相等這一性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•桂林)已知平面直角坐標(biāo)系xOy中,點(diǎn)A在拋物線y=x2+上,過A作AB⊥x軸于點(diǎn)B,AD⊥y軸于點(diǎn)D,將矩形ABOD沿對角線BD折疊后得A的對應(yīng)點(diǎn)為A′,重疊部分(陰影)為△BDC.
(1)求證:△BDC是等腰三角形;
(2)如果A點(diǎn)的坐標(biāo)是(1,m),求△BDC的面積;
(3)在(2)的條件下,求直線BC的解析式,并判斷點(diǎn)A′是否落在已知的拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣西桂林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•桂林)已知平面直角坐標(biāo)系xOy中,點(diǎn)A在拋物線y=x2+上,過A作AB⊥x軸于點(diǎn)B,AD⊥y軸于點(diǎn)D,將矩形ABOD沿對角線BD折疊后得A的對應(yīng)點(diǎn)為A′,重疊部分(陰影)為△BDC.
(1)求證:△BDC是等腰三角形;
(2)如果A點(diǎn)的坐標(biāo)是(1,m),求△BDC的面積;
(3)在(2)的條件下,求直線BC的解析式,并判斷點(diǎn)A′是否落在已知的拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:填空題

(2005•桂林)已知任意直線l把?ABCD分成兩部分,要使這兩部分的面積相等,直線l所在位置需滿足的條件是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

(2005•桂林)已知∠MON=90°,等邊三角形ABC的一個(gè)頂點(diǎn)A是射線OM上的一定點(diǎn),頂點(diǎn)B與點(diǎn)O重合,頂點(diǎn)C在∠MON內(nèi)部.
(1)當(dāng)頂點(diǎn)B在射線ON上移動(dòng)到B1時(shí),連接AB1,請?jiān)凇螹ON內(nèi)部作出以AB1為一邊的等邊三角形AB1C1(保留作圖痕跡,不寫作法和證明);
(2)設(shè)AB1與OC交于點(diǎn)Q,AC的延長線與B1C1交于點(diǎn)D.求證:△ACQ∽△AB1D;
(3)連接CC1,試猜想∠ACC1為多少度?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣西桂林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•桂林)已知關(guān)于x的一元二次方程x2-6x+k=0有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k取符合條件的最大整數(shù),且一元二次方程x2-6x+k=0與x2+mx-1=0有一個(gè)相同的根,求常數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷