【題目】(1)如圖①,△ABC中,∠ABC、∠ACB的平分線交于O點,過O點作EF∥BC交AB、AC于點E、F,試猜想EF、BE、CF之間有怎樣的關系,并說明理由;
(2)如圖,若將圖①中∠ACB的平分線改為外角∠ACD的平分線,其它條件不變,請直接寫出EF、BE、CF之間的關系 .
【答案】(1)EF=BE+CF,理由見解析;(2)EF=BE﹣CF,理由見解析
【解析】
(1)等腰三角形有△BEO和△CFO,根據(jù)角平分線性質和平行線性質推出∠EBO=∠EOB,∠FOC=∠FCO,根據(jù)等角對等邊推出即可;根據(jù)BE=OE,CF=OF即可得出EF與BE、CF之間的關系;
(2)等腰三角形有△BEO和△CFO,根據(jù)角平分線性質和平行線性質推出∠EBO=∠EOB,∠FOC=∠FCO,根據(jù)等角對等邊推出即可;根據(jù)BE=OE,CF=OF即可得出EF與BE、CF之間的關系.
(1)EF=BE+CF,
理由:∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF;
(2)不成立,
理由:∵BO平分∠ABC,CO平分∠ACG,
∴∠EBO=∠OBC,∠FCO=∠OCG,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCG,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=OE﹣OF=BE﹣CF.
故答案為EF=BE﹣CF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點A,AB=10,AC=5,射線BM⊥AB,垂足為點B,一動點E從A點出發(fā)以2厘米秒的速度沿射線AN包括點A)運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當點E運動_____秒時,△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點D為邊AB上一點,CD繞點D順時針旋轉90°至DE,CE交AB于點G.已知AD=8,BG=6,點F是AE的中點,連接DF,求線段DF的長___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm2.(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b與x軸和y軸交于A、B兩點,AB=4,∠BAO=45°.
(1)如圖1,求直線AB的解析式.
(2)如圖1,直線y=2x﹣2交x軸于點E.且P為該直線在直線AB上方一動點,當△PAB的面積等于10時,將線段PE沿著x軸平移得到線段P1E1,連接OP1.求OP1+P1E1+的最小值.
(3)如圖2,在(2)問的條件下,若直線y=2x﹣2與y軸的交點是C,連接CE1,得到△OCE1,將△OCE1繞著原點O逆時針旋轉α°(0<α<180),旋轉過程中直線OC與直線AB交于點M,直線CE1與直線AB交于點N,當△CMN為等腰三角形時,直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個頂點A處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.
(1)如果D是棱的中點,蜘蛛沿“AD→DB”路線爬行,它從A點爬到B點所走的路程為多少?
(2)你認為“AD→DB”是最短路線嗎?如果你認為不是,請計算出最短的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com