直線分別交x軸、y軸于A、B兩點(diǎn),△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得到△COD,拋物線y=ax2+bx+c經(jīng)過A、C、D三點(diǎn).
(1)寫出點(diǎn)A、B、C、D的坐標(biāo);
(2)求經(jīng)過A、C、D三點(diǎn)的拋物線表達(dá)式,并求拋物線頂點(diǎn)G的坐標(biāo);
(3)在直線BG上是否存在點(diǎn)Q,使得以點(diǎn)A、B、Q為頂點(diǎn)的三角形與△COD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
解:(1)A(3,0),B(0,1),C(0,3),D(-1,0) (4分) (2)∵拋物線經(jīng)過C點(diǎn),∴c=3 (1分) 又∵拋物線經(jīng)過A,C兩點(diǎn),∴ 解得 (2分) ∴ (1分) ∴,∴頂點(diǎn)G(1,4) (1分) (3)解:過點(diǎn)G作GH⊥y軸垂足為點(diǎn)H, ∵,,∵tan∠BAO=,tan∠GBH=, ∴∠GBH=∠BAO (1分) ∵∠BAO+∠ABO=90°,∴∠GBH+∠ABO=90°,∴∠GBA=90°, ∴∠ABQ=∠DOC=∠AOB (1分) 、佼(dāng)時(shí),△ODC∽△BQA, 即,∴BQ= (1分) 過點(diǎn)Q作QN⊥y軸,垂足為點(diǎn)N,設(shè)Q(x,y), ∵,,, ∵tan∠GBH=,∴BN=1,∴, (2分) 、谕砜傻茫,Q(-3,-8) (2分) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2x |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市順義區(qū)李橋中學(xué)九年級(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年重慶市一中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江黑河、齊齊哈爾、大興安嶺卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,平面直角坐標(biāo)系中,直線l分別交x軸、y軸于A、B兩點(diǎn)(OA<OB)且OA、OB的長分別是一元二次方程的兩個(gè)根,點(diǎn)C在x軸負(fù)半軸上,
且AB:AC=1:2
(1)求A、C兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)M從C點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線CB運(yùn)動(dòng),連接AM,設(shè)△ABM的面積為S,點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)點(diǎn)P是y軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使以 A、B、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com