直線分別交x軸、y軸于AB兩點(diǎn),△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得到△COD,拋物線y=ax2+bx+c經(jīng)過A、CD三點(diǎn).

(1)寫出點(diǎn)A、B、C、D的坐標(biāo);

(2)求經(jīng)過A、CD三點(diǎn)的拋物線表達(dá)式,并求拋物線頂點(diǎn)G的坐標(biāo);

(3)在直線BG上是否存在點(diǎn)Q,使得以點(diǎn)AB、Q為頂點(diǎn)的三角形與△COD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

答案:
解析:

  解:(1)A(3,0),B(0,1),C(0,3),D(-1,0)  (4分)

  (2)∵拋物線經(jīng)過C點(diǎn),∴c=3  (1分)

  又∵拋物線經(jīng)過A,C兩點(diǎn),∴ 解得  (2分)

  ∴  (1分)

  ∴,∴頂點(diǎn)G(1,4)  (1分)

  (3)解:過點(diǎn)G作GHy軸垂足為點(diǎn)H

  ∵,,∵tanBAO,tanGBH,

  ∴∠GBH=∠BAO  (1分)

  ∵∠BAO+∠ABO=90°,∴∠GBH+∠ABO=90°,∴∠GBA=90°,

  ∴∠ABQ=∠DOC=∠AOB  (1分)

 、佼(dāng)時(shí),△ODC∽△BQA

  即,∴BQ  (1分)

  過點(diǎn)QQNy軸,垂足為點(diǎn)N,設(shè)Q(x,y),

  ∵,,

  ∵tanGBH,∴BN=1,∴,  (2分)

 、谕砜傻茫,Q(-3,-8)  (2分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)一模)如圖,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于A,B兩點(diǎn),點(diǎn)P(a,b)是反比例函數(shù)y=
1
2x
在第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y 軸于點(diǎn)N,PM,PN分別交直線AB于E,F(xiàn),有下列結(jié)論:①AF=BE;②圖中的等腰直角三角形有4個(gè);③S△OEF=
1
2
(a+b-1);④∠EOF=45°.其中結(jié)論正確的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線數(shù)學(xué)公式分別交x軸、y軸于B、A兩點(diǎn),拋物線L:y=ax2+bx+c的頂點(diǎn)G在x軸上,且過(0,4)和(4,4)兩點(diǎn).
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)將拋物線L沿x軸平行移動(dòng)得拋物線L1,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應(yīng)的函數(shù)關(guān)系式,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市順義區(qū)李橋中學(xué)九年級(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線分別交x軸、y軸于B、A兩點(diǎn),拋物線L:y=ax2+bx+c的頂點(diǎn)G在x軸上,且過(0,4)和(4,4)兩點(diǎn).
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)將拋物線L沿x軸平行移動(dòng)得拋物線L1,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應(yīng)的函數(shù)關(guān)系式,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年重慶市一中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,直線分別交x軸、y軸于B、A兩點(diǎn),拋物線L:y=ax2+bx+c的頂點(diǎn)G在x軸上,且過(0,4)和(4,4)兩點(diǎn).
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)將拋物線L沿x軸平行移動(dòng)得拋物線L1,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應(yīng)的函數(shù)關(guān)系式,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江黑河、齊齊哈爾、大興安嶺卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中,直線l分別交x軸、y軸于A、B兩點(diǎn)(OA<OB)且OA、OB的長分別是一元二次方程的兩個(gè)根,點(diǎn)C在x軸負(fù)半軸上,

且AB:AC=1:2

(1)求A、C兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)M從C點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線CB運(yùn)動(dòng),連接AM,設(shè)△ABM的面積為S,點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)點(diǎn)P是y軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使以 A、B、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案