【題目】如圖AB,C三點(diǎn)在O,直徑BD平分∠ABC,過點(diǎn)DDEAB交弦BC于點(diǎn)EBC的延長(zhǎng)線上取一點(diǎn)F,使得EFDE

1)求證DF是⊙O的切線;

2)連接AFDE于點(diǎn)M AD4,DE5,DM的長(zhǎng)

【答案】1)證明見解析;(21

【解析】試題分析:

1)由BD平分∠ABC,AB∥DE可證得∠DBE=∠BDE,由DE=EF,可得∠EDF=∠EFD,由此可得∠BDE+∠EDF=90°,即可得到BD⊥DF,從而可得DFO的切線;

2如圖,連接DC,由已知易證△ABD≌△CBD,從而可得 CD=AD=4,AB=BC;在Rt△DCE中由勾股定理可求得EC=3;由(1)可得BE=DE=EF=5,從而可得BC=AB=8;由AB∥DE可得△ABF∽△MEF,由此即可求得ME的長(zhǎng),最后由MD=DE-ME即可求得所求答案.

試題解析:

1 BD平分∠ABC

ABD=CBD.

DEAB,

ABD=BDE.

CBD=BDE.

ED=EF

EDF=EFD.

∵∠EDF+EFD+EDB+EBD=180°,

BDF=BDE+EDF=90°.

ODDF.

OD是半徑,

DF是⊙O的切線.

2連接DC,

BD是⊙O的直徑,

BAD=BCD=90°.

ABD=CBD,BD=BD

ABD≌△CBD.

CD=AD=4,AB=BC.

DE=5,

,EF=DE=5.

CBD=BDE

BE=DE=5.

, .

AB=8.

DEAB

ABF∽△MEF.

.

ME=4.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,ABAC,∠BAC58°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,使C與點(diǎn)O恰好重合,則∠OEB_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作一個(gè)30°角”的尺規(guī)作圖過程.

已知:平面內(nèi)一點(diǎn)A.

求作:∠A,使得∠A30°.

作法:如圖,

(1)作射線AB;

(2)在射線AB上取一點(diǎn)O,以O(shè)為圓心,OA為半徑作圓,與射線AB相交于點(diǎn)C;

(3)以C為圓心,OC為半徑作弧,與⊙O交于點(diǎn)D,作射線AD.

∠DAB即為所求的角.

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x(元)與日銷售量y(個(gè))之間有如下關(guān)系:

日銷售單價(jià)x(元)

3

4

5

6

日銷售量y(個(gè))

20

15

12

10

1)猜測(cè)并確定yx之間的函數(shù)關(guān)系式,并畫出圖象;

2)設(shè)經(jīng)營(yíng)此賀卡的銷售利潤(rùn)為W元,求出Wx之間的函數(shù)關(guān)系式,

3)若物價(jià)局規(guī)定此賀卡的售價(jià)最高不能超過10元/個(gè),請(qǐng)你求出當(dāng)日銷售單價(jià)x定為多少時(shí),才能獲得最大日銷售利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對(duì)勾股定理進(jìn)行了推廣研究如圖(圖1為銳角,2為直角,3為鈍角)

ABC的邊BC上取 兩點(diǎn),使, , 進(jìn)而可得 ;(用表示

AB=4,AC=3,BC=6,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對(duì)稱軸是x

2若該二次函數(shù)的圖象開口向下,當(dāng)時(shí), 的最大值是2,求當(dāng)時(shí), 的最小值;

3)若對(duì)于該拋物線上的兩點(diǎn), ,當(dāng), 時(shí),均滿足,請(qǐng)結(jié)合圖象,直接寫出的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(t,0)x軸上的動(dòng)點(diǎn),Q(02t)y軸上的動(dòng)點(diǎn).若線段PQ與函數(shù)y=﹣|x|2+2|x|+3的圖象只有一個(gè)公共點(diǎn),則t的取值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說:“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國(guó)統(tǒng)一考試(全國(guó)卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取20名人員的答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75

乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90

整理數(shù)據(jù)

成績(jī)x(分)

60≤x≤70

70x≤80

80x≤90

90x≤100

甲小區(qū)

2

5

a

b

乙小區(qū)

3

7

5

5

分析數(shù)據(jù)

統(tǒng)計(jì)量

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

85.75

87.5

c

乙小區(qū)

83.5

d

80

應(yīng)用數(shù)據(jù)

1)填空:a   ,b   ,c   ,d   ;

2)若甲小區(qū)共有800人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于90分的人數(shù);

3)社區(qū)管理員看完統(tǒng)計(jì)數(shù)據(jù),認(rèn)為甲小區(qū)對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)掌握更好,請(qǐng)你寫出社區(qū)管理員的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示二次函數(shù)y=-2x24xm的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.

(1)m的值及點(diǎn)B的坐標(biāo);

(2)△ABC的面積;

(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y),使SABDSABC請(qǐng)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案