精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點A,B,CEF是數軸上的點.回答下列問題:

(1)A,C兩點間的距離是多少?

(2)若點E與點B的距離是2,則E點表示的數是什么?

(3)F點與A點的距離是m(m>0),F點表示的數是多少?(用含字母m的代數式表示)

【答案】(1)A,C兩點間的距離是5;(2)E點表示的數是-40 (3) F點表示的數是m-3-m-3。

【解析】

(1)直接根據A,C表示的數即可求出A,C兩點間的距離;

(2)分點E在點B左側和右側兩種情況,分情進行討論即可;

(3) 分點F在點A左側和右側兩種情況,分情進行討論即可;.

(1) A,C兩點間的距離為 ;

(2)當點E在點B左側時,E點表示的數為

當點E在點B右側時,E點表示的數為;

綜上所述,E點表示的數是-40

(3) 當點F在點A左側時,F點表示的數為

當點F在點A右側時,F點表示的數為

綜上所述,F點表示的數是m-3-m-3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知RtΔABC,C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.

(1)求證:DE是圓O的切線.

(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個小正方形,已知下部的小正方形的邊長為am,計算:

1)窗戶的面積;

2)窗框的總長;

3)若a1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計,求制作這種窗戶需要的費用是多少元(π取3.14,結果保留整數).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點E、DDF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現有若干根長度相同的火柴棒,用a根火柴棒,按如圖①擺放時可擺成m個正方形,用b根火柴棒,按如圖②擺放時可擺成2n個正方形.(m、n是正整數)

1)如圖①,當m=4時,a=______;如圖②,當b=52時,n=______

2)當若干根長度相同的火柴棒,既可以擺成圖①的形狀,也可以擺成圖②的形狀時,mn之間有何數量關系,請你寫出來并說明理由;

3)現有61根火柴棒,用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀.請你直接寫出一種擺放方法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列判定中,正確的個數有( )

①一組對邊平行,一組對邊相等的四邊形是平行四邊形;

②對角線互相平分且相等的四邊形是矩形;

③對角線互相垂直的四邊形是菱形;

④對角線互相垂直平分且相等的四邊形是正方形,

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,ADBC于點D,BEAC于點E,點FAB的中點, ADFE、BE分別交于點GH,∠CBE=∠BAD.有下列結論:①FD=FE;② AH=2BD ③AD·BC=AE·AB; ④2CD2=EH2.其中正確的結論有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】世界杯比賽中,根據場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數,返回則記作負數,一段時間內,某守門員的跑動情況記錄如下(單位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定開始計時時,守門員正好在球門線上)

(1)守門員最后是否回到球門線上?

(2)守門員離開球門線的最遠距離達多少米?

(3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內,對方球員有幾次挑射破門的機會?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某段筆直的限速公路上,規(guī)定汽車的最高行駛速度不能超過60km/h(即m/s),交通管理部門在離該公路100m處設置了一速度檢測點A,在如圖所示的坐標系中,A位于y軸上,測速路段BCx軸上,點BA的北偏西60°方向上,點C在點A的北偏東45°方向上.

(1)在圖中直接標出表示60°45°的角;

(2)寫出點B、點C坐標;

(3)一輛汽車從點B勻速行駛到點C所用時間為15s.請你通過計算,判斷該汽車在這段限速路上是否超速?(本小問中1.7)

查看答案和解析>>

同步練習冊答案