【題目】小張?jiān)谫F陽購(gòu)買了套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請(qǐng)根據(jù)圖中的數(shù)據(jù)(單位:),解答下列問題:

(1)用含的代數(shù)式表示地面總面積;

(2),地磚的平均費(fèi)用為140,那么鋪地磚的總費(fèi)用為多少元?

【答案】1)地面總面積為;(2)鋪地磚的總費(fèi)用為7140元.

【解析】

1)地面由客廳、臥室、衛(wèi)生間、廚房四部分構(gòu)成,而且每部分均為長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式即可得;

2)先將x、y的值代入求出總面積,再乘以140即可得出答案.

1)由地面結(jié)構(gòu)圖可知,地面總面積為客廳、臥室、衛(wèi)生間、廚房四個(gè)長(zhǎng)方形的面積之和,即

故地面總面積為;

2)將代入可得,地面總面積為

則鋪地磚的總費(fèi)用為(元)

答:鋪地磚的總費(fèi)用為7140元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線BD平分∠ABC,過點(diǎn)AAEBD,交CD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)EEFBC,交BC延長(zhǎng)線于點(diǎn)F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°,BC2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長(zhǎng)方形紙片分別沿著EP,FP對(duì)折,使點(diǎn)B落在點(diǎn)B,點(diǎn)C落在點(diǎn)C.若點(diǎn)P,B,C不在一條直線上,且兩條折痕的夾角∠EPF85°,則∠BPC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像交x軸、y軸于A、B兩點(diǎn)

(1)直接寫出A、B兩點(diǎn)的坐標(biāo):____________;______________。

(2)P為線段AB上一點(diǎn),PQ//y軸交x軸于C,交雙曲線于Q且四邊形OBPQ為平行四邊形,△OCQ的面積為3

① 求k的值和P點(diǎn)坐標(biāo);

② 將△OBP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一周,在整個(gè)旋轉(zhuǎn)過程中,P點(diǎn)能否落在雙曲線上?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)材料,解答問題

如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-44,-1,則兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)之間的距離,稱之為絕對(duì)值的幾何意義

問題應(yīng)用1

1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對(duì)應(yīng)的的值為___________;

2)方程的解____________;

3)方程的解______________ ;

問題應(yīng)用2

如圖,若數(shù)軸上表示的點(diǎn)為.

4的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;

5的幾何意義是數(shù)軸上_______的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;

6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在等腰梯形ABCD中,ADBC,AB=DC,點(diǎn)E為邊BC上一點(diǎn),且AE=DC.

1)求證:四邊形AECD是平行四邊形;

2)當(dāng)∠B=2DCA時(shí),求證四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ADCD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AGBC,交DE于點(diǎn)G,連接AF、CG.

(1)求證:AFBF;

(2)如果ABAC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A、B兩點(diǎn),交y軸于C點(diǎn),其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論①abc<0;(4a﹣b)(2a+b)<0;4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為(  )

A. ①②③④ B. ①②④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x-2與y軸交于點(diǎn)C,與x軸交于點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A,連接OA,若S△AOB∶S△BOC=1∶2,則k的值為____.

查看答案和解析>>

同步練習(xí)冊(cè)答案