【題目】根據(jù)材料,解答問題

如圖,數(shù)軸上有點,對應的數(shù)分別是6,-4,4,-1,則兩點間的距離為;兩點間的距離為;兩點間的距離為;由此,若數(shù)軸上任意兩點分別表示的數(shù)是,則兩點間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對應點之間的距離,稱之為絕對值的幾何意義

問題應用1

1)如果表示-1的點和表示的點之間的距離是2,則點對應的的值為___________;

2)方程的解____________;

3)方程的解______________

問題應用2

如圖,若數(shù)軸上表示的點為.

4的幾何意義是數(shù)軸上_____________,當__________,的值最小是____________;

5的幾何意義是數(shù)軸上_______,的最小值是__________,此時點在數(shù)軸上應位于__________上;

6)根據(jù)以上推理方法可求的最小值是___________,此時__________.

【答案】1-31;(2-71;(31;(4)點4的距離;4;0;(5)點-1和到4的距離之和;5;線段CD;(62;2

【解析】

1)根據(jù)數(shù)軸上兩點間的距離的定義即可求解;

2)根據(jù)數(shù)軸上兩點間的距離的定義即可求解;

3)根據(jù)數(shù)軸上兩點間的距離的定義即可求解;

4)絕對值的幾何意義即可求解;

5)絕對值的幾何意義即可求解;

6)絕對值的幾何意義即可求解.

1)如果表示-1的點和表示的點之間的距離是2,則點對應的的值為-31,

故答案為:-31;

2即表示的點距離-3的點距離是4,則的值為-71,

故答案為:-71;

3即表示的點距離-46的距離相等,

m-46的中點,

∴m=1;

故答案為:1;

4的幾何意義是數(shù)軸上點4的距離,當4,的值最小是0

故答案為:點4的距離;40;

5的幾何意義是數(shù)軸上點-1和到4的距離之和,的最小值是5,此時點在數(shù)軸上應位于線段CD

故答案為:點-1和到4的距離之和;5;線段CD;

6)表示12,3的距離之和

的最小值是2,此時2

故答案為:2;2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內(nèi)已知,,、分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知,

1)求證:,

2)若繞點B旋轉(zhuǎn)到外部,其他條件不變,則(1)中結(jié)論是否仍成立?請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標為(,m),則不等式組mx﹣2<kx+1<mx的解集為(  )

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點M,經(jīng)過B,M 兩點的⊙OBC于點G,交AB于點F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當BE=3,cosC=時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張在貴陽購買了套經(jīng)濟適用房,他準備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請根據(jù)圖中的數(shù)據(jù)(單位:),解答下列問題:

(1)用含的代數(shù)式表示地面總面積;

(2),地磚的平均費用為140,那么鋪地磚的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應香洲區(qū)全面推進書香校園建設的號召,班長小青隨機調(diào)查了若干同學一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0t7,B:7t14,C:14t21,D:t21),根據(jù)圖中信息,解答下列問題:

(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?

(2)補全條形統(tǒng)計圖,并求出表示A組的扇形統(tǒng)計圖的圓心角的度數(shù);

(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA 交于點E,連接AC、BD交于點F,作AHCE,垂足為點H,已知∠ADE=ACB.

(1)求證:AH是⊙O的切線;

(2)若OB=4,AC=6,求sinACB的值;

(3)若,求證:CD=DH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學中,運用整體思想方法在求代數(shù)式的值中非常重要.

例如:已知:a2+2a=1,則代數(shù)式2a2+4a+4=2( a2+2a) +4=2×1+4=6.

請你根據(jù)以上材料解答以下問題:

1)若,求的值;

2)當時,代數(shù)式的值是5,求當時,代數(shù)式px3+qx+1的值;

3)當時,代數(shù)式的值為m,求當時,求代數(shù)式的值是多少?

查看答案和解析>>

同步練習冊答案