【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價(jià)是每1千克3元,乙種飲料銷售價(jià)是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
【答案】
(1)解:設(shè)該廠生產(chǎn)甲種飲料x千克,則生產(chǎn)乙種飲料(650﹣x)千克,
根據(jù)題意得, ,
由①得,x≤425,
由②得,x≥200,
所以,x的取值范圍是200≤x≤425
(2)解:設(shè)這批飲料銷售總金額為y元,
根據(jù)題意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,
即y=﹣x+2600,
∵k=﹣1<0,
∴y隨x的增大而減小,
∴當(dāng)x=200時(shí),這批飲料銷售總金額最大,
則650﹣x=650﹣200=450.
故該飲料廠生產(chǎn)甲種飲料200千克,乙種飲料450千克,才能使得這批飲料銷售總金額最大
【解析】(1)表示出生產(chǎn)乙種飲料(650﹣x)千克,然后根據(jù)所需A種果汁和B種果汁的數(shù)量列出一元一次不等式組,求解即可得到x的取值范圍;(2)根據(jù)銷售總金額等于兩種飲料的銷售額的和列式整理,再根據(jù)一次函數(shù)的增減性求出最大銷售額.
【考點(diǎn)精析】關(guān)于本題考查的一元一次不等式組的應(yīng)用,需要了解1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+ 與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱
(1)填空:點(diǎn)B的坐標(biāo)是;
(2)過點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對(duì)稱點(diǎn)C′恰好落在該拋物線的對(duì)稱軸上,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個(gè)數(shù)字.
(1)從這個(gè)袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是;
(2)從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個(gè)位數(shù)字,組成一個(gè)兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請(qǐng)用“畫樹狀圖”或“列表”的方法寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù) 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù) 的圖象上,連接OA、OB,若OA⊥OB,OB= OA,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過點(diǎn)A(﹣4,0)、B(0,4),⊙O的半徑為1(O為坐標(biāo)原點(diǎn)),點(diǎn)P在直線AB上,過點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長PQ的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉辦“大愛鎮(zhèn)江”征文活動(dòng),小明為此次活動(dòng)設(shè)計(jì)了一個(gè)以三座山為背景的圖標(biāo)(如圖),現(xiàn)用紅、黃兩種顏色對(duì)圖標(biāo)中的A、B、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.
(1)請(qǐng)用樹狀圖列出所有涂色的可能結(jié)果;
(2)求這三塊三角形區(qū)域中所涂顏色是“兩塊黃色、一塊紅色”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A、C分別在x軸、y軸的正半軸上,且OA=2,OC=1,矩形對(duì)角線AC、OB相交于E,過點(diǎn)E的直線與邊OA、BC分別相交于點(diǎn)G、H.
(1)直接寫出點(diǎn)E的坐標(biāo): .
(2)求證:AG=CH.
(3)如圖2,以O(shè)為圓心,OC為半徑的圓弧交OA與D,若直線GH與弧CD所在的圓相切于矩形內(nèi)一點(diǎn)F,求直線GH的函數(shù)關(guān)系式.
(4)在(3)的結(jié)論下,梯形ABHG的內(nèi)部有一點(diǎn)P,當(dāng)⊙P與HG、GA、AB都相切時(shí),求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任取不等式組 的一個(gè)整數(shù)解,則能使關(guān)于x的方程:2x+k=﹣1的解為非負(fù)數(shù)的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com