【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,以B為圓心,AB為半徑作扇形ABC,交對(duì)角線BD于點(diǎn)E,過(guò)點(diǎn)E作⊙B的切線分別交AD,CDGF兩點(diǎn),則圖中陰影部分的面積為( 。

A. B. C. D.

【答案】A

【解析】

由四邊形ABCD是正方形,且GF是⊙B的切線可證出DGF是等腰直角三角形,再由正方形的邊長(zhǎng),分別知道BE的長(zhǎng),再求出DE的長(zhǎng),進(jìn)一步求出DG的長(zhǎng).再用正方形的面積-扇形的面積-三角形的面積即可求出陰影面積.

∵四邊形ABCD是正方形,

∴∠ABC=ADC=90°,∠GDE=FDE=45°,

GF是⊙B的切線,

BDGF,

∴∠DEG=DEF=90°

∴∠DGE=45°,∠DFE=45°

DG=DF,GF=2DE

DG=DF=DE,

BD=AB=2

DE=BD-BE=2-2,

DG=DF=2-2=4-2

S陰影=S正方形ABCD-S扇形BAC-SDGF

=2×2--4-22

=8-8-π

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于點(diǎn)AB(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過(guò)MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

(3)E是拋物線對(duì)稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開(kāi)矩形紙片,并連接EF

的長(zhǎng)為多少;

AE的長(zhǎng);

BE上是否存在點(diǎn)P,使得的值最?若存在,請(qǐng)你畫(huà)出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過(guò)程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)A時(shí),測(cè)得點(diǎn)ABD的距離AC=2m,點(diǎn)A到地面的距離AE=1.8m;當(dāng)他從A處擺動(dòng)到A處時(shí),有A'BAB

(1)求ABD的距離;

(2)求A到地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初三某班同學(xué)小戴想根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),通過(guò)研究一個(gè)未學(xué)過(guò)的函數(shù)的圖象,從而探究其各方面性質(zhì).

下表是函數(shù)y與自變量x的幾組對(duì)應(yīng)值:

x

-1

0

1

2

3

4

5

6

9

12

y

-4

0

4

8

12

9

7.2

6

4

3

1)在平面直角坐標(biāo)系xOy中,每個(gè)小正方形的邊長(zhǎng)為一個(gè)單位長(zhǎng)度,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象.

2)請(qǐng)根據(jù)畫(huà)出的函數(shù)圖象,直接寫(xiě)出該函數(shù)的關(guān)系式y=______(請(qǐng)寫(xiě)出自變量的取值范圍),并寫(xiě)出該函數(shù)的一條性質(zhì):______

3)當(dāng)直線y=-x+b與該函數(shù)圖象有3個(gè)交點(diǎn)時(shí),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,邊長(zhǎng)為4,∠MDN90°,將∠MDN繞點(diǎn)D旋轉(zhuǎn),其中DM邊分別與射線BA、直線AC交于E、Q兩點(diǎn),DN邊與射線BC交于點(diǎn)F;連接EF,且EF與直線AC交于點(diǎn)P

1)如圖1,點(diǎn)E在線段AB上時(shí),①求證:AECF;②求證:DP垂直平分EF

2)當(dāng)AE1時(shí),求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AFCD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F

1)求證:BF=CD;

2)連接BE,若BEAFBFA=60°,BE=,求平行四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店進(jìn)行門(mén)店升級(jí)需要裝修,裝修期間暫停營(yíng)業(yè),若請(qǐng)甲乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問(wèn):

甲、乙兩組工作一天,商店各應(yīng)付多少錢(qián)?

已知甲組單獨(dú)完成需12天,乙組單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用最少?

裝修完畢第二天即可正常營(yíng)業(yè),且每天仍可盈利200即裝修前后每天盈利不變,你認(rèn)為商店應(yīng)如何安排施工更有利?說(shuō)說(shuō)你的理由可用問(wèn)的條件及結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案