【題目】如圖,在正方形ABCD中,邊長為4,∠MDN90°,將∠MDN繞點D旋轉,其中DM邊分別與射線BA、直線AC交于E、Q兩點,DN邊與射線BC交于點F;連接EF,且EF與直線AC交于點P

1)如圖1,點E在線段AB上時,①求證:AECF;②求證:DP垂直平分EF;

2)當AE1時,求PQ的長.

【答案】(1)見解析;(2)

【解析】

(1)①只要證明ADE≌△CDEASA)即可解決問題;

②利用相似三角形的性質證明∠PDQ=45°即可解決問題;

(2)作QHADH,QEABG.由AQD∽△EQP,可知AQPQDQEQ,想辦法求出AQEQ,DQ即可解決問題;

(1)①證明:∵四邊形ABCD是正方形,

DADC,ADCDAEDCF=90°,

∴∠ADCMDN=90°,

∴∠ADECDF,

∴△ADE≌△CDEASA),

AECF

②∵△ADE≌△CDEASA),

DEDF,∵∠MDN=90°,

∴∠DEF=45°,

∵∠DAC=45°,

∴∠DAQPEQ,∵∠AQDEQP,

∴△AQD∽△EQP

,

,

∵∠AQEPQD

∴△AQE∽△DQP,

∴∠DDPQAE=45°,

∴∠DPE=90°,

DPEF,

DEDF,

PEPF,

DP垂直平分線段EF

(2)解:作QHADHQEABG

RtADE中,DE

∵∠QAHQAG=45°,

HOQEAHEQ,設QHx,

×4×x+×1×x×1×4,

x

AQ,DQ,EQ,

∵△AQD∽△EQP,

AQPQDQEQ,

PQ

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的切線,切點分別為、的直徑,相交于點,連接.下列結論:①;②;③若,則;④.其中正確的個數(shù)為(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點,,且點B在雙曲線上,在AB的延長線上取一點C,過點C的直線交雙曲線于點D,交x軸正半軸于點E,且,則線段CE長度的取值范圍是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,以B為圓心,AB為半徑作扇形ABC,交對角線BD于點E,過點E作⊙B的切線分別交ADCDG,F兩點,則圖中陰影部分的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線BDADECD上一點,連接AEBD于點F,GAF的中點,連接DG

1)如圖1,若DG=DF=1,BF=3,求CD的長;

2)如圖2,連接BE,且BE=AD,∠AEB=90°MN分別為DG,BD上的點,且DM=BN,HAB的中點,連接HM、HN,求證:∠MHN=AFB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線x0)相交于AB兩點,與x軸相交于C點,△BOC的面積是.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線x0)的交點有( )

A. 0B. 1C. 2D. 0個,或1個,或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,ABBDCDBDAPPC,垂足分別為BPD,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

1)證明:ABCD=PBPD

2)如圖乙,也是一個“三垂圖”,上述結論成立嗎?請說明理由.

3)已知拋物線與x軸交于點A-1,0),B3,0),與y軸交于點(0,-3),頂點為P,如圖丙所示,若Q是拋物線上異于A、BP的點,使得∠QAP=90°,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為12(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60).

1)求小明從點A走到點D的過程中,他上升的高度;

2)大樹BC的高度約為多少米?

查看答案和解析>>

同步練習冊答案