【題目】如圖,在矩形ABCD,AB=8,AD=6,EAB上一點,AE=2,FAD,AEF沿EF折疊,當折疊后點A的對應點A'恰好落在BC的垂直平分線上時,折痕EF的長為__________

【答案】4或

【解析】分析:①當AF<AD時,由折疊的性質得到A′E=AE=2,AF=A′F,FAE=A=90°,過EEHMNH,由矩形的性質得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結論;②當AF>AD時,由折疊的性質得到A′E=AE=2 AE2HE2,AF=A′F,FAE=A=90°,過A′HGBCABG,交CDH,根據(jù)矩形的性質得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結論.

詳解:①當AF<AD時,如圖1,將AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,


A′E=AE=2,AF=A′F,FAE=A=90°,
MNBC的垂直平分線,
AM=AD=3,
EEHMNH,則四邊形AEHM是矩形,
MH=AE=2,
AH==,
AM=
MF2+A′M2=A′F2
(3-AF)2+(2=AF2,
AF=2,
EF==4;
②當AF>AD時,如圖2,將AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,


A′E=AE=2HG=3,
EG=
DH=AG=AE+EG=3,
AF=,
EF==4,
綜上所述,折痕EF的長為44,
故答案為:44

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的面積等于25,直線a,b,c分別過A,BC三點,且abcEF⊥直線c,垂足為點F交直線a于點E,若直線a,b之間的距離為3,則EF=( 。

A. 1B. 2C. -3D. 5-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABCD沿EF對折,使點A落在點C處,若∠A=60°,AD=4,AB=6,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

x1)(x1)= x2 1,

x1)(x2 x1)=x3 1,

x1)(x3x2 x1)=_________,………

(1)猜想規(guī)律(x1)(xn xn1…+x2 x1)=______,

(2)根據(jù)上面的結論,你能求出下面式子的結果嗎?

x20 1÷x1)=_______,

(3)已知x3x2 x1=0,求x2012的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在手工制作課上,老師組織七年級(2)班的學生用硬紙制作圓柱形茶葉筒.七年級(2)班共有學生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學生每小時剪筒身50個或剪筒底120個.

1)七年級(2)班有男生、女生各多少人?

2)要求一個筒身配兩個筒底,為了使每小時剪出的筒身與筒底剛好配套,應該分配多少名學生剪筒身,多少名學生剪筒底?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地電話撥號上網(wǎng)有兩種收費方式,用戶可以任意選擇其中一種:第一種是計時制,0.05元/分; 第二種是包月制,69元/月(限一部個人住宅電話上網(wǎng)).此外,每一種上網(wǎng)方式都得加收通訊費0.02元/分.

1)若小明家今年三月份上網(wǎng)的時間為小時,請你分別寫出兩種收費方式下小明家應該支付的費用;

2)若小明估計自家一個月內上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球訓練中,為了訓練球員快速搶斷轉身,教練設計了折返跑訓練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負,練習一組的行駛記錄如下(單位:米):+40,-30,+50,-25,+25,-30,+15,-28,+16,-20.

1)球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

2)球員訓練過程中,最遠處離出發(fā)點多遠?

3)球員在一組練習過程中,跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE最小,則這個最小值為(  )

A. B. 2C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習冊答案